Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Shock failure analysis of military equipments by using strain energy density
Download
index.pdf
Date
2010
Author
Mercimek, Ümit
Metadata
Show full item record
Item Usage Stats
374
views
1040
downloads
Cite This
Failure of metallic structures operating under shock loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure’s dynamic characteristics and varying loadings. Therefore, experimental, numerical or a combination of both methods are used for evaluations. The experimental analysis of the shocks due to firing is done for 12.7mm Gatling gun and 25mm cannon. During the tests, the Gatling gun and the cannon are located on military Stabilized Machine Gun Platform and Stabilized Cannon Platform respectively. For the firing tests, ICP (integrated circuit piezoelectric) accelerometers are attached to obtain the loading history for corresponding points. Shock Response Spectrum (SRS) analysis (nCode Glypworks) is done to define the equivalent shock profiles created on test pieces and the mount of 25mm cannon by means of the gun and the cannon firing. Transient shock analysis of the test pieces and the mount are done by applying the obtained shock profiles on the parts in a finite element model (ANSYS). Furthermore, experimental stress analysis due to shock loading is performed for two different types of material and different thicknesses of the test pieces. The input data for the analysis is obtained through measurements from strain rosette precisely located at the critical location of the test pieces. As a result of the thesis, a proposal is tried to be introduced where strain energy density theory is applied to predict the shock failure at military structures.
Subject Keywords
Shock (Mechanics).
,
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12612721/index.pdf
https://hdl.handle.net/11511/20344
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Shock failure analysis of metallic structures by using strain energy density method
Çelik, Mehmet; Mercimek, Ümit; Kadıoğlu, Fevzi Suat (2014-01-01)
Failure of metallic structures operating under shock loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure's dynamic characteristics and varying loadings. Therefore, experimental, numerical, or a combination of both methods is used for evaluations. In this study, test pieces made of two different materials are subjected to shock loads stemming from firing of a Gatling gun. Strain measurements are made, and f...
Vibration induced stress and accelerated life analyses of an aerospace structure
Özsoy, Serhan; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2006)
Fatigue failure of metallic structures operating under dynamic loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure̕s dynamic characteristics and varying loadings. Therefore, experimental, numerical or a combination of both methods are used for fatigue evaluations. Fatigue failure can occur on systems and platforms as well as components to be mounted on the platform. In this thesis, a helicopter̕s Missile W...
Vibration fatigue analysis of structures installed on air platforms
Eldoğan, Yusuf; Ciğeroğlu, Ender; Department of Mechanical Engineering (2012)
Although a component satisfies all operating static requirements, failures can still occur due to vibration induced fatigue. Vibration induced fatigue is a frequent phenomenon, in cases where the natural frequencies of the structures are excited by the loading. Hence, the methods which consider all dynamic characteristic of the structure should be used to obtain accurate fatigue life predictions. These methods in frequency domain are called vibration fatigue methods which give accurate, reliable and fast re...
Vibration fatigue analysis of equipments used in aerospace
Aykan, Murat; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2005)
Metal Fatigue of dynamically loaded structures is a very common phenomenon in engineering practice. As the loading is dynamic one cannot neglect the dynamics of the structure. When the loading frequency has a wide bandwidth then there is high probability that the resonance frequencies of the structure will be excited. When this happens then one cannot assume that the structures response to the loading will remain linear in the frequency domain. Thus to overcome such situations frequency domain fatigue analy...
Mechanical fatique and life estimation analysis of printed circuit board components
Genç, Cem; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2006)
In this thesis, vibration induced fatigue life analysis of axial leaded Tantalum & Aluminum capacitors, PDIP and SM capacitors mounted on the printed circuit boards are performed. This approach requires the finite element model, material properties and dynamic characteristics of the PCB. The young modulus of the PCB material is obtained from 3 point bending tests, resonance frequencies are obtained from modal tests and transmissibility’s of the PCB are obtained from transmissibility tests which are used as ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ü. Mercimek, “Shock failure analysis of military equipments by using strain energy density,” M.S. - Master of Science, Middle East Technical University, 2010.