Classification of motor imagery tasks in EEG signal and its application to a brain-computer interface for controlling assistive environmental devices

Download
2011
Acar, Erman
This study focuses on realization of a Brain Computer Interface (BCI)for the paralyzed to control assistive environmental devices. For this purpose, different motor imagery tasks are classified using different signal processing methods. Specifically, band-pass filtering, Laplacian filtering, and common average reference (CAR) filtering areused to enhance the EEG signal. For feature extraction; Common Spatial Pattern (CSP), Power Spectral Density (PSD), and Principal Component Analysis (PCA) are tested. Linear Feature Normalization (LFN), Gaussian Feature Normalization (GFN), and Unit-norm Feature Vector Normalization (UFVN) are studied in Support Vector Machine (SVM) and Artificial Neural Network (ANN) classification. In order to evaluate and compare the performance of the methodologies, classification accuracy, Cohen’s kappa coefficient, and Nykopp’s information transfer are utilized. The first experiments on classifying motor imagery tasks are realized on the 3-class dataset (V) provided for BCI Competition III. Also, a 4-class problem is studied using the dataset (IIa) provided for BCI Competition IV. Then, 5 different tasks are studied in the METU Brain Research Laboratory to find the optimum number and type of tasks to control a motor imagery based BCI. Thereafter, an interface is designed for the paralyzed to control assistive environmental devices. Finally, a test application is implemented and online performance of the design is evaluated.

Suggestions

Analysis and classification of spelling paradigm EEG data and an attempt for optimization of channels used
Yıldırım, Asil; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2010)
Brain Computer Interfaces (BCIs) are systems developed in order to control devices by using only brain signals. In BCI systems, different mental activities to be performed by the users are associated with different actions on the device to be controlled. Spelling Paradigm is a BCI application which aims to construct the words by finding letters using P300 signals recorded via channel electrodes attached to the diverse points of the scalp. Reducing the letter detection error rates and increasing the speed of...
A computational model of the brain for decoding mental states from FMRI images
Alkan, Sarper; Yarman Vural, Fatoş Tunay; Department of Cognitive Sciences (2019)
Brain decoding from brain images obtained using functional magnetic resonance imaging (fMRI) techniques is an important task for the identification of mental states and illnesses as well as for the development of brain machine interfaces. The brain decoding methods that use multi-voxel pattern analysis that rely on the selection of voxels (volumetric pixels) that have relevant activity with respect to the experimental tasks or stimuli of the fMRI experiments are the most commonly used methods. While MVPA ba...
Classification in Frequency Domain of EEG Signals of Motor Imagery for Brain Computer Interfaces
Halıcı, Uğur (2009-05-22)
In this study the classification of the EEG signals recorded during motor imagery for curser movement in brain computer interfaces is examined, in which the feature vectors obtained in frequency domain is used and then the linear transformations are applied for reducing the size of the feature vectors.
Representation of Cognitive Processes Using the Minimum Spanning Tree of Local Meshes
Firat, Orhan; Ozay, Mete; Onal, Itir; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-07-07)
A new graphical model called Cognitive Process Graph (CPG) is proposed, for classifying cognitive processes based on neural activation patterns which are acquired via functional Magnetic Resonance Imaging (fMRI) in brain. In the CPG, first local meshes are formed around each voxel. Second, the relationships between a voxel and its neighbors in a local mesh, which are estimated by using a linear regression model, are used to form the edges among the voxels (graph nodes) in the CPG. Then, a minimum spanning t...
Evolving aggregation behaviors for swarm robotics systems: a systematic case study
Bahçeci, Erkin; Şahin, Erol; Department of Computer Engineering (2005)
Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest in the use of evolution in swarm robotics is also on the rise. However, when one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding some parameters of fitness evaluations and of the genetic algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron control...
Citation Formats
E. Acar, “Classification of motor imagery tasks in EEG signal and its application to a brain-computer interface for controlling assistive environmental devices,” M.S. - Master of Science, Middle East Technical University, 2011.