Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Classification of 4-class Motor Imagery EEG Data with Common Sparse Spectral Spatial Pattern Method
Date
2009-01-01
Author
Akinci, Berna
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
119
views
0
downloads
Cite This
Brain Computer Interface aims to provide a communication system with external media via thougths. For this purpose, brain signals are acquired from the scalp by EEG device and processed for characterization. In this work, the classification of movement imagery EEG data has been studied for left hand, right hand, foot and tongue movement imagination cases. Common Spatial Patterns (CSP) method and temporal filters have been used in classification and Common Sparse Spectral Spatial Patterns (CSSSP) method has been tried on 4-class motor imagery data in order to improve the accuracy for classification.
Subject Keywords
Brain Computer Interface
,
Common Spatial Patterns
,
EEG
,
motor imagery
,
FILTERS
URI
https://hdl.handle.net/11511/100935
DOI
https://doi.org/10.1109/biyomut.2009.5130261
Conference Name
14th National Biomedical Engineering Meeting
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis and classification of spelling paradigm EEG data and an attempt for optimization of channels used
Yıldırım, Asil; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2010)
Brain Computer Interfaces (BCIs) are systems developed in order to control devices by using only brain signals. In BCI systems, different mental activities to be performed by the users are associated with different actions on the device to be controlled. Spelling Paradigm is a BCI application which aims to construct the words by finding letters using P300 signals recorded via channel electrodes attached to the diverse points of the scalp. Reducing the letter detection error rates and increasing the speed of...
Classification of motor imagery tasks in EEG signal and its application to a brain-computer interface for controlling assistive environmental devices
Acar, Erman; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2011)
This study focuses on realization of a Brain Computer Interface (BCI)for the paralyzed to control assistive environmental devices. For this purpose, different motor imagery tasks are classified using different signal processing methods. Specifically, band-pass filtering, Laplacian filtering, and common average reference (CAR) filtering areused to enhance the EEG signal. For feature extraction; Common Spatial Pattern (CSP), Power Spectral Density (PSD), and Principal Component Analysis (PCA) are tested. Line...
Application of Wiener Deconvolution Model in P300 Spelling Paradigm
Erdogan, Balkar; Gençer, Nevzat Güneri (2009-01-01)
Spelling Paradigm first introduced by Farwell and Donchin, is one of the Brain Computer Interface (BCI) applications that enables paralyzed people to communicate with their environment. In such a problem, user needs to focus on the characters which are randomly flashed row or column-wise on the computer screen in a small period of time. The accuracy in spelling words is the main problem in this scheme and the duration of the correct prediction is quite important. The purpose of this work is twofold: to anal...
Prototype Hardware Design for Brain Computer Interface Applications
Erdogan, Balkar; Akinci, Berna; Acar, Erman; Usakli, Ali Buelent; Gençer, Nevzat Güneri (2009-01-01)
Brain Computer Interface (BCI) is an alternative communication pathway between the human brain and outside world in which only the brain activity is interpreted in a special way. These systems are based on the electrical activity of the brain that can be measured via Electroencephalography (EEG) devices. BCI enables people with severe motor disorders (like ALS) to communicate with their environment or control a wheelchair for their movement by using the EEG signals. In this study, a prototype data acquisito...
Brain Computer Interfaces for Silent Speech
TABAR, Yousef Rezaei; Halıcı, Uğur (2017-05-01)
Brain Computer Interface (BCI) systems provide control of external devices by using only brain activity. In recent years, there has been a great interest in developing BCI systems for different applications. These systems are capable of solving daily life problems for both healthy and disabled people. One of the most important applications of BCI is to provide communication for disabled people that are totally paralysed. In this paper, different parts of a BCI system and different methods used in each part ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Akinci and N. G. Gençer, “Classification of 4-class Motor Imagery EEG Data with Common Sparse Spectral Spatial Pattern Method,” presented at the 14th National Biomedical Engineering Meeting, İzmir, Türkiye, 2009, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100935.