Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
3+1 orthogonal and conformal decomposition of the einstein equation and the adm formalism for general relativity
Download
index.pdf
Date
2011
Author
Dengiz, Suat
Metadata
Show full item record
Item Usage Stats
5
views
5
downloads
In this work, two particular orthogonal and conformal decompositions of the 3+1 dimensional Einstein equation and Arnowitt-Deser-Misner (ADM) formalism for general relativity are obtained. In order to do these, the 3+1 foliation of the four-dimensional spacetime, the fundamental conformal transformations and the Hamiltonian form of general relativity that leads to the ADM formalism, defined for the conserved quantities of the hypersurfaces of the globally-hyperbolic asymptotically flat spacetimes, are reconstructed. All the calculations up to chapter 7 are just a review. We propose a method in chapter 7 which gives an interesting relation between the Cotton (Conformal) soliton and the static vacuum solutions. The formulation that we introduce can be extended to find the gradient Cotton soliton and the solutions of Topologically Massive Gravity (TMG) as well as the gradient Ricci soliton.
Subject Keywords
Physics.
URI
http://etd.lib.metu.edu.tr/upload/12612949/index.pdf
https://hdl.handle.net/11511/20446
Collections
Graduate School of Natural and Applied Sciences, Thesis