Ruthenium(III) acetylacetonate as catalyst precursor in the dehydrogenation of dimethylamine-borane

Download
2011
Ünel, Ebru
Amine boranes have recently been considered as solid hydrogen storage materials with high capability of hydrogen storage. Dimethylamine borane is one of the promising amine boranes with high theoretical gravimetric capacity of 16.9 wt%. Dimethylamine borane can undergo dehydrogenation only in the presence of a suitable catalyst at moderate temperature. In this project, throughout the dehydrogenation of dimethylamine borane (DMAB), the catalytic activity of ruthenium(III) acetylacetonate was examined for the first time. During the catalytic reaction, formation of a new in-situ ruthenium(II) species, [Ru{N2Me4}3(acac)H], is observed. Mercury poisoning experiment indicates that the in-situ ruthenium(II) species is a homogeneous catalyst in the dehydrogenation of dimethylamine borane. Kinetics of catalytic dehydrogenation of dimethylamine borane starting with ruthenium(III) acetylacetonate was investigated depending on catalyst concentration, substrate concentration and temperature. As a result, the hydrogen generation rate was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Besides, evaluation of the kinetic data yielded that the activation parameters for dehydrogenation reaction: the activation energy, Ea = 85 ± 2 kJ•mol-1; the enthalpy of activation, DH# = 82 ± 2 kJ•mol-1 and the entropy of activation; DS# = -85 ± 5 J•mol-1•K-1. Additionally, before deactivation, [Ru{N2Me4}3(acac)H] provides 1700 turnovers over 100 hours in hydrogen evolution from the dehydrogenation of dimethlyamine borane. [Ru{N2Me4}3(acac)H] complex formed during the dehydrogenation of dimethylamine borane was isolated and characterized by UV-Visible, FTIR, 1H NMR, and Mass Spectroscopy. The isolated ruthenium(II) species was also tested as homogeneous catalyst in the dehydrogenation of dimethylamine borane.

Suggestions

Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-11-15)
Ruthenium(0) nanoparticles supported on magnetic silica-coated cobalt ferrite (Ru(0)/SiO2-CoFe2O4) were in situ generated from the reduction of Ru3+/SiO2-CoFe2O4 during the catalytic hydrolysis of ammonia-borane (AB). Ruthenium(III) ions were impregnated on SiO2-CoFe2O4 from the aqueous solution of ruthenium(III) chloride and then reduced by AB at room temperature yielding Ru(0)/SiO2-CoFe2O4 which were isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TE...
Ruthenium nanoparticles supported on nanotubes/nanowires: highly active and long lived nanocatalysts in hydrolytic dehydrogenation of ammonia borane /
Akbayrak, Serdar; Özkar, Saim; Department of Chemistry (2016)
Ammonia borane (NH3BH3, AB) is one of the most promising solid hydrogen storage materials due to its high hydrogen storage capacity (19.6% wt.), non-toxicity and high stability under ambient conditions. Ammonia borane can release hydrogen upon hydrolysis in the presence of suitable catalysts even at room temperature. Although a large variety of catalysts have been tested in hydrogen generation from the hydrolysis of ammonia borane, the development of efficient, long-lived, reusable catalysts is still an imp...
Ruthenium(0) nanoclusters stabilized by zeolite framework as superb catalyst for the hydrogenation of neat benzene under mild conditions: Additional studies including cation site occupancy, catalytic activity, lifetime, reusability and poisoning
Zahmakiran, Mehmet; Kodaira, Tetsuya; Özkar, Saim (Elsevier BV, 2010-06-07)
The hydrogenation of arenes is an ubiquitous chemical transformation used in both the petrochemical and specialty industry and important for the generation of clean diesel fuels. In a recent communication (M. Zahmakiran, S. Ozkar, Langmuir 24 (2008) 7065) we have reported the preliminary results for the unprecedented catalytic activity of zeolite framework stabilized ruthenium(0) nanoclusters in the hydrogenation of neat benzene (TOF approximate to 1040 mol benzene/mol Ru.h) under mild conditions (22 degree...
Ruthenium(0) nanoparticles supported on graphene: preparation, characterization and catalytic use in hydrogen generation from hydrolysis of ammonia borane
Acar, Fatma Asiye; Özkar, Salim; Department of Chemistry (2015)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. In hydrogen economy, chemical hydrides have been tested as hydrogen storage materials for supplying hydrogen at ambient temperature. Among these chemical materials, ammonia borane having a high content of hydrogen (19.6 wt.%) seems to be an ideal hydrogen storage material since it is stable under ordinary conditions and releases hydrogen gas in a safe and controllable way in aqueous solutio...
Effect of stabilizer on the catalytic activity of Kobalt(0) Nanoclusters catalyst in the hydrolysis of Sodium Borohydride
Koçak, Ebru; Özkar, Saim; Department of Chemistry (2009)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. Among the chemical hydrides used as hydrogen storage materials for supplying hydrogen at ambient temperature, sodium borohydride seems to be an ideal one because it is stable under ordinary conditions and liberates hydrogen gas in a safe and controllable way in aqueous solutions. However, self hydrolysis of sodium borohydride is so slow that requires a suitable catalyst. This work aims the ...
Citation Formats
E. Ünel, “Ruthenium(III) acetylacetonate as catalyst precursor in the dehydrogenation of dimethylamine-borane,” M.S. - Master of Science, Middle East Technical University, 2011.