Performance analysis of a compression ignition internal combustion engine using superheated ethanol vapor

Download
2011
Aksu, Çağdaş
The aim of this study is to experimentally measure performance characteristics of a compression ignition (CI) internal combustion engine using superheated ethanol vapor. The engine is a 1.3L inline 4 cylinder direct injection (DI) turbocharged compression ignition (CI) engine. While the engine will be fed with superheated ethanol as homogeneous fuel-air mixture through intake manifold, the amount of diesel fuel that the engine requires to run at idle will also be supplied in order to initiate combustion. Ethanol will be superheated using a new patented double heat exchanger has been manufactured by Prof. Dr. Demir Bayka, Dr. Anıl Karel and Deniz Çakar. The results will indicate if the suggested concept can be applicable.

Suggestions

Evaluation of effect of fillet rolling process on the fatigue performance of a diesel engine crankshaft
Çevik, Gül; Gürbüz, Rıza; Department of Metallurgical and Materials Engineering (2012)
In this study, effect of fillet rolling process on fatigue performance of a diesel engine crankshaft was investigated. Crankshafts from two different materials, were studied; ductile cast iron EN-GJS 800-2 and micro-alloyed steel 38MnVS6. Resonance bending fatigue tests were conducted with crankshaft samples. Test plan according to staircase test methodology was used. Statistical analyses were carried out with the test data by Maximum Likelihood Estimation method in order to calculate the fatigue limits and...
Production and assesment of compacted graphite iron diesel engine blocks
Alkan, Anıl; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (2011)
In Diesel engine blocks properties such as tensile strength, heat conductivity, sound damping, engine vibration and noise are strongly influenced by graphite shape and volume percent in the matrix microstructure. In this study, the engine blocks were produced at ELBA Basınçlı Döküm Odöksan Cast iron foundry in Osmaneli Turkey by performing casting into furan resin sand and preparing cast iron liquid alloy in induction furnace that were treated with Mg by using ladle method. The main purpose of this study is...
Thermodynamic and structural design and analysis of a novel turbo rotary engine
Ercan, Taylan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
A novel turbo rotary engine, operating according to a novel thermodynamic cycle, having an efficient compression phase, a limited temperature combustion phase followed by a long power extraction phase is designed. Thermodynamic and structural design and analysis of this novel engine is carried out and two prototypes are manufactured according to these analysis. High performance figures such as torque, power and low specific fuel consumption are calculated. Also the component tests of the manufactured protot...
Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine
Barzegar, Ramin; Shafee, Sina; Khalilarya, Shahram (National Library of Serbia, 2013)
In the present paper, the combustion process and emission formation in the Lister 8.1 in-direct injection diesel engine have been investigated using a computational fluid dynamics code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately re...
Efficiency Optimization of a Direct Torque Controlled Induction Motor used in Hybrid Electric Vehicles
Sergaki, Eleftheria S.; Moustaizis, Stavros D. (2011-09-10)
The main contribution of this paper is the application of Loss Minimization control algorithm of a three-phase squirrel-cage induction motor which is used in parallel with an internal combustion engine (ICE), in hybrid electric vehicles (HEY). During steady state operation of the electric motor, the electric motor's optimal motor flux profile minimizes the electric motor losses and maximizes the overall HEN efficiency, hybridization factor (HF). During steady state operation of the direct torque controlled ...
Citation Formats
Ç. Aksu, “Performance analysis of a compression ignition internal combustion engine using superheated ethanol vapor,” M.S. - Master of Science, Middle East Technical University, 2011.