Viscous time scale in accreting powered pulsars and anomalous X-ray pulsars

İçdem, Burçin
In this thesis we analyse X-ray data of accretion powered low mass and high mass X-ray binaries to understand the nature of their accretion mechanisms by searching for some clues of viscous time-scales of their accretion discs, if they have, in their low frequency power density spectra created from their long-term X-ray observations, or by doing pulse timing analysis with much shorter X-ray data to detect the effects of torque fluctuations caused by the accreting material on the pulsar. The low mass and high mass X-ray binaries we analysed have breaks in their power density spectra, which are attributed to the role of viscosity in the formation of accretion discs. Although, the time-scales corresponding to these break frequencies are smaller than the predictions of the Standard theory of accretion discs, the sources give consistent results among themselves by displaying the expected correlation between their break and orbital frequencies. The correlation curve of LMXBs implies thicker appearing accretion discs than those assumed by the theory. The dichotomy of the HMXBs on this curve points out the different origins of accretion that these sources may have, and offers a way to distinguish the stellar-wind fed systems from the Roche-lobe overflow systems. The timing and spectral analysis of Swift J1626.6-5156 reveal a correlation between the spin-up rate and the luminosity of the source implying that the pulsar is accretion-powered. This correlation together with the characteristics of the X-ray spectra enables us to estimate the magnetic field and the distance of the source. The AXP 1E 2259+586 does not display any signs of viscous time-scale in its low frequency power density spectra, and its pulse timing analysis gives a much smaller torque noise value than that expected from accretion powered pulsars. In addition, the analysis results presented in this thesis reveal magnetar-like glitches which differ than those of radio pulsars, due to the presence of the strong magnetic field of the pulsar. These results eliminate the possibility that the AXP is an accretion-powered pulsar.
Citation Formats
B. İçdem, “Viscous time scale in accreting powered pulsars and anomalous X-ray pulsars,” M.S. - Master of Science, Middle East Technical University, 2011.