Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dimethyl Ether (DME) synthesis using mesoporous SAPO-34 like catalytic materials
Download
index.pdf
Date
2011
Author
Demir, Hakan
Metadata
Show full item record
Item Usage Stats
247
views
149
downloads
Cite This
In 21st century, researchers make great effort of finding a clean transportation fuel to diminish the severe effects of conventional transportation fuel combustion such as global warming and air pollution. Dimethyl ether is considered as a strong fuel alternative due to its good burning characteristics and environmentally friendly properties. In order to produce dimethyl ether, different synthesis routes and solid acid catalysts are being utilized. SAPO-34 is an aluminophosphate based catalyst having moderate acidity. This property makes it a good candidate for the synthesis of dimethyl ether. However, SAPO-34 has microporous structure causing diffusion limitations. The objective of this study is to synthesize, characterize mesoporous SAPO-34 like catalytic materials and test the activity of them in methanol dehydration reaction. The benefit of obtaining mesoporous structure is that the diffusion limitations can be eliminated. Mesoporous SAPO-34 like catalysts were synthesized through hydrothermal synthesis route. BET surface areas of these catalysts were 117-133 m2/g. All methanol dehydration reactions were carried out at a space time of 0.14 s.g/cm3. By using mesoporous SAPO-34 like catalysts, the highest methanol conversion was 48% obtained at 550°C with DME selectivity and yield values of 1 and 0.49, respectively. Since utilizing microporous SAPO-34 catalyst gave higher methanol conversion, 67%, at lower temperature, 250°C, with dimethyl ether selectivity of around 1, mesoporous SAPO-34 like catalysts are not suitable for this reaction.
Subject Keywords
Chemistry, Organic
URI
http://etd.lib.metu.edu.tr/upload/12613471/index.pdf
https://hdl.handle.net/11511/20704
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
In-situ generation of poly(n-vinyl-2-pyrrolidone)-stabilized palladium(0) and ruthenium(0) nanoclusters as catalysts for hydrogen generation from the methanolysis of ammonia-borane
Erdoğan, Huriye; Özkar, Saim; Department of Chemistry (2010)
More attention has been paid to find new type renewable energy sources because of increasing concern about the environmental problems arising from the combustion of fossil fuels as energy sources. The development of new storage materials will facilitate the use of hydrogen as a major energy carrier. Several possibilities exist for ‘‘solid-state’’ storage: the hydrogen can be trapped in metal organic frameworks, carbon nanotubes and certain alloys; or one can use materials in which hydrogen is already presen...
Dimethyl ether production from synthesis gas with bifunctional catalyst mixtures
Ermiş, Salih; Sezgi, Naime Aslı; Doğu, Timur; Department of Chemical Engineering (2022-8)
In recent times, studies on alternative clean fuels have increased due to the depletion of crude oil reserves in the world because of increasing energy demand and the worldwide existence of severe air pollution. Dimethyl ether (DME) is, therefore, being investigated as an excellent clean fuel alternative in compression-ignition engines. DME can be produced from synthesis gas by two different methods, direct and indirect. Recently, the direct method has gained importance in the production of DME from syngas....
Spreparation of multifunctional materials for photocatalytic applications
Uzun, Cere; Volkan, Mürvet; Department of Chemistry (2019)
Due to the increasingly polluted environment and the limited energy reserves, the development of high efficient renewable technologies, green energy sources and ecofriendly methods for environmental remediation and energy production is highly important. Hydrogen (H2), as a clean and carbonless energy source, is of great potential in solving the environmental pollution and energy shortage. Turkey is a country that clued-in textile production. But the widespread discharge of wastewaters from the textile indus...
Optimum daily operation of a wind-hydro hybrid system
Ercan, Eray; Kentel Erdoğan, Elçin (2022-06-01)
© 2022 Elsevier LtdDue to the negative effects of fossil fuels on the environment and health, energy supply is shifting towards renewables. The integration of renewable energy systems is challenging due to the intermittent nature of renewables, however this can be mitigated through storage. Uncertainty in electricity prices in spot markets further complicates the operation of these systems. Pumped storage hydropower is currently the most viable form of large-scale energy storage, and operation of renewable ...
Dimethyl ether from synthesis gas over bifunctional hybrid catalyst mixtures
Bayat, Ayşegül; Doğu, Timur; Department of Chemical Engineering (2013)
Due to increasing prices of crude oil based transportation fuels and ascending rate of global warming caused by high emission levels of conventional fuels with excessive use, alternative fuels have been considered as alternates. Dimethyl ether (DME) has received growing attention as an alternative clean fuel with low NOx formation and particulate emission, smokeless combustion and high cetane number. DME is mainly synthesized by two methods. In the first method, synthesis gas which is a mixture of carbon mo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Demir, “Dimethyl Ether (DME) synthesis using mesoporous SAPO-34 like catalytic materials,” M.S. - Master of Science, Middle East Technical University, 2011.