Sliding mode control algorithm development for anti-lock brake system

Download
2011
Okyay, Ahmet
In this thesis, a sliding mode controller employing a new sliding surface for antilock brake system (ABS) is proposed, its stability is proven formally and its performance is compared with existing sliding mode controllers. The new sliding mode controller uses the integral-derivative surface, which includes error, its derivative and its integral, all at the same time. This and the already existing derivative surface, which includes error and its derivative only, are named zerothorder sliding surfaces. Their stability analysis is done using first-order auxiliary surfaces. Auxiliary surfaces equal the sliding surfaces when derivative of the error becomes zero. The first-order error surface, which includes only the error, and the integral surface, which includes error and its integral, were also designed for comparison. During design, tire brake force response is modelled as an uncertainty. Controllers are simulated on a road with an abrupt change in road coefficient of adhesion. Controller parameters used are optimized, which results in comparable stopping distances while braking on a constant coefficient of adhesion road. Effect of first order actuator dynamics with varying time constants and actuator absolute time delay were considered. Reaching and sliding properties of controllers were also investigated, using results on a constant coefficient of adhesion road. It is observed that zeroth-order sliding surfaces give smoother response for both derivative and integral-derivative cases. As the controllers employing error and derivative surfaces get unstable in the presence of actuator time delay, the integral-derivative surface, proposed in this study, stands as the best controller.

Suggestions

Optimization of ride comfort for vehicles equipped with passive and active hydro-pneumatic suspensions
Sağlam, Ferhat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2016)
The main objective of this study is the optimization of ride comfort performance of vehicles equipped with Hydro-Pneumatic (HP) suspension systems. In order to improve ride comfort performance together with handling behavior as a constraint, active-passive, and unconnected-interconnected HP suspension systems are included in the study. The basic HP suspension model is developed and validated by experiments. Various HP suspension systems of increasing complexity are modeled, and their dynamic characteristics...
Sliding mode control for non-linear systems with adaptive sliding surfaces
Durmaz, Burak; Özgören, Mustafa Kemal; SALAMCİ, METİN UYMAZ (2012-02-01)
This study covers the sliding mode control design with adaptive sliding surfaces for a class of affine non-linear systems, which can be described by (x) over dot = A(x)x + B(x)u + f(x) + d(x, t). The main streamline of the study is the sliding surface design for such systems. The sliding surfaces are designed to be moving with varying slopes and offsets. The varying sliding surface parameters are determined by solving the state-dependent Riccati equations online during the control process. Thus, the sliding...
Sliding mode control with optimal sliding surfaces for missile autopilot design
Salamci, MU; Özgören, Mustafa Kemal; Banks, SP (2000-07-01)
A new method is introduced to design sliding mode control with optimally selected sliding surfaces for a class of nonlinear systems. The nonlinear systems are recursively approximated as linear time-varying systems, and corresponding time-varying sliding surfaces are designed for each approximated system so that a given optimization criterion is minimized. The control input, which is designed by using an approximated system, is then applied to the nonlinear system. The method is used to design an autopilot ...
SLIDING-MODE CONTROL ALGORITHM DEVELOPMENT FOR ANTI-LOCK BRAKING SYSTEM
Okyay, Ahmet; Ciğeroğlu, Ender; BAŞLAMIŞLI, SELAHATTİN ÇAĞLAR (2010-07-24)
In this paper, a sliding mode control methodology is implemented for the ABS control problem. Tire-road adhesion coefficient is taken as an uncertain parameter within known limits. This allows designing a robust sliding mode controller which does not require utilization of road coefficient of adhesion information, which is difficult to measure. As an improvement over previous studies, the sliding plane is formed to include both integral and derivative terms of the slip ratio error rather than only one of th...
Design and control of self-parking model car
Avğan, Utku; Balkan, Raif Tuna; Ünlüsoy, Samim; Department of Mechanical Engineering (2003)
A fuzzy logic control algorithm for self parking of a model car has been developed and an embedded controller hardware has been designed, manufactured and programmed to control parking maneuvers of a model car within the scope of this thesis study. The model car chassis consists of a DC motor actuated traction system and a servomotor actuated steering mechanism. Position data and parking place data is obtained by a sensory system. A stepper motor driven rotary table is designed and assembled to the model ca...
Citation Formats
A. Okyay, “Sliding mode control algorithm development for anti-lock brake system,” M.S. - Master of Science, Middle East Technical University, 2011.