Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On algebraic function fields with class number three
Download
index.pdf
Date
2011
Author
Buyruk, Dilek
Metadata
Show full item record
Item Usage Stats
236
views
164
downloads
Cite This
Let K/Fq be an algebraic function field with full constant field Fq and genus g. Then the divisor class number hK of K/Fq is the order of the quotient group, D0K /P(K), degree zero divisors of K over principal divisors of K. The classification of the function fields K with hK = 1 is done by MacRea, Leitzel, Madan and Queen and the classification of the extensions with class number two is done by Le Brigand. Determination of the necessary and the sufficient conditions for a function field to have class number three is done by Ḧulya T̈ore. Let k := Fq(T) be the rational function field over the finite field Fq with q elements. For a polynomial N ∈ Fq[T], we construct the Nth cyclotomic function field KN. Cyclotomic function fields were investigated by Carlitz, studied by Hayes, M. Rosen, M. Bilhan and many other mathematicians. Classification of cyclotomic function fields and subfields of cyclotomic function fields with class number one is done by Kida, Murabayashi, Ahn and Jung. Also the classification of function fields with genus one and classification of those with class number two is done by Ahn and Jung. In this thesis, we classified all algebraic function fields and subfields of cyclotomic function fields over finite fields with class number three.
Subject Keywords
Mathemaatics
URI
http://etd.lib.metu.edu.tr/upload/12613080/index.pdf
https://hdl.handle.net/11511/20935
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On abelian group actions with TNI-centralizers
Ercan, Gülin (2019-07-03)
A subgroup H of a group G is said to be a TNI-subgroup if for any Let A be an abelian group acting coprimely on the finite group G by automorphisms in such a way that for all is a solvable TNI-subgroup of G. We prove that G is a solvable group with Fitting length h(G) is at most . In particular whenever is nonnormal. Here, h(G) is the Fitting length of G and is the number of primes dividing A counted with multiplicities.
Groups of automorphisms with TNI-centralizers
Ercan, Gülin (2018-03-15)
A subgroup H of a finite group G is called a TNI-subgroup if N-G(H) boolean AND H-9 = 1 for any g is an element of G \ N-G (H). Let A be a group acting on G by automorphisms where C-G(A) is a TNI-subgroup of G. We prove that G is solvable if and only if C-G(A) is solvable, and determine some bounds for the nilpotent length of G in terms of the nilpotent length of C-G(A) under some additional assumptions. We also study the action of a Frobenius group FH of automorphisms on a group G if the set of fixed point...
Equivariant Picard groups of the moduli spaces of some finite Abelian covers of the Riemann sphere
Ozan, Yıldıray (2023-03-01)
In this note, following Kordek's work we will compute the equivariant Picard groups of the moduli spaces of Riemann surfaces with certain finite abelian symmetries.
Finite groups having centralizer commutator product property
Ercan, Gülin (2015-12-01)
Let a be an automorphism of a finite group G and assume that G = {[g, alpha] : g is an element of G} . C-G(alpha). We prove that the order of the subgroup [G, alpha] is bounded above by n(log2(n+1)) where n is the index of C-G(alpha) in G.
Restricted Modules and Conjectures on Modules of Constant Jordan Type
Öztürk, Semra (Springer, 2014-01-01)
We introduce the class of restricted k[A]-modules and p t-Jordan types for a finite abelian p-group A of exponent at least p t and a field k of characteristic p. For these modules, we generalize several theorems by Benson, verify a generalization of conjectures stated by Suslin and Rickard giving constraints on Jordan types for modules of constant Jordan type when t is 1. We state conjectures giving constraints on p t-Jordan types and show that many p t-Jordan types are realizable.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Buyruk, “On algebraic function fields with class number three,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.