Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Plasma surface modification and characterization of pmma films
Download
index.pdf
Date
2011
Author
Özgen, Özge
Metadata
Show full item record
Item Usage Stats
328
views
277
downloads
Cite This
Surface properties play an essential role for determining the behavior of a material for many applications such as coating, printing, adhesion and prosthesis implanting since the surface is the first part that comes in contact with the environment. Although the bulk properties of some materials are at the desired level, the surface may need to be modified for a better compatibility with its surrounding. Plasma treatment is one generally preferred technique because of its high potential to create various functional groups on the surface of the sample by changing the applied plasma parameters. Some molecules can be successfully immobilized onto these surfaces using these specific chemical functional groups created by plasma. The type of the functional group is important for intended purpose of covalent binding of different molecules on the surface of a material. Present study offers important routes for optimization of the surface functionality of (PMMA) films by changing the plasma parameters. For this purpose, solvent casted polymethylmetacrylate PMMA films were modified by, nitrogen, argon and oxygen plasma by using a radiofrequency (RF) generator; and with various powers (10W, 50W, 100W) for different periods (5min, 15min and 30min). The effects of these plasma parameters (gas type, applied power, plasma time) on hydrophilicity, surface free energy, surface chemistry, and surface topography were investigated. Also, the types of surface free radicals created with oxygen plasma treatment were analysed and the decay of these radicals were examined by Electron Spin Resonance Spectroscopy (ESR). In general, plasma treatment reduced the contact angle of PMMA films where the most hydrophilic surface was obtained for 100W 30 min argon plasma treated sample showing superhydrophilic character with the water contact angle value of ~10°. Surface free energy measurements were carried out according to Geometric Mean, Harmonic Mean, Acid-Base approach and it was found that oxygen, nitrogen and argon plasma treatments increased the surface free energy for all samples by increasing the polar components and introducing functional groups on the surface. X-Ray Photoelectron Spectroscopy (XPS) analysis results revealed that free carbonyl and carbonate groups were formed by oxygen plasma treatment, whereas carboxylic acid and free carbonyl groups were formed after argon plasma treatment, and imine, primary amine, amide and nitrozo groups were formed by nitrogen plasma. Atomic Force Microscopy (AFM) analysis revealed that the roughness of the surface increased considerably from ~2 nm to ~75 nm for the 100W 30 min oxygen plasma treated samples. ESR analysis indicated the presence of peroxy radicals on the surface of the oxygen plasma treated PMMA and the intensity of these radicals increased with increasing plasma power. Decay study of the newly created radicals demonstrated that after 1 month under the atmospheric conditions there were still peroxy radicals on the surface of PMMA. This functionality is important in leading time for further process for binding of different molecules to the surface of the materials for specific purposes. As a result, RF plasma was found to be an effective tool for modification of surface properties of materials with product diversity for intended purposes.
Subject Keywords
Polymethylmethacrylate.
,
Polymers.
URI
http://etd.lib.metu.edu.tr/upload/12613976/index.pdf
https://hdl.handle.net/11511/21052
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Nanocomposites based on blends of polyethylene
Işık, Fatma; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride; as organoclay Cloisite? 15A, Cloisite? 25A and Cloisite? 30B were used. All samples were prepared by a co-rotating t...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Oxygen plasma modification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film surfaces for tissue engineering purposes
Hasırcı, Vasıf Nejat; Tezcaner, Ayşen; Hasırcı, Nesrin (2003-02-22)
Plasma glow-discharge application is known as a technique to coat or modify the surfaces of various materials. In this study, the influence of oxygen rf-plasma treatment on surface and bulk properties of a biological polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), were studied by determining water content and water contact angle, and by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The plasma-treated films absorbed more water than the untreated film, and the a...
Foamed eva-bitumen blends and composites
Çankaya, Burhan Fuat; Bayramlı, Erdal; Department of Polymer Science and Technology (2008)
The thermal conductivities of foamed polymer based materials are much lower thermal conductivity values than unfoamed polymeric materials. Especially, thermal conductivity values of foamed polymers with closed-cell structure decreases to 0.03 W/m.K. The reinforcement of foamed polymeric materials by mixing with bitumen lowers the raw material cost. The main objective of this study is to make a new thermal insulation material with low thermal conductance. In this study, the effects of concentration of calciu...
Powder metal development for electrical motor applications
Bayramli, E; Golgelioglu, O; Ertan, Hulusi Bülent (2005-04-10)
In this paper, first the development process of a soft magnetic composite material for use in motor applications is described. Various mixtures are prepared to identify an optimum mix. It is found that highest packing is achieved for a mixing ratio of 45 % of 170 mesh particle size with 55 % 325 mesh particle size. The coating of the particles is obtained by using the "wetting method". The mechanical properties of the samples; such as stress versus strain, Strain% versus composition%, etc. are given, also s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Özgen, “Plasma surface modification and characterization of pmma films,” M.S. - Master of Science, Middle East Technical University, 2011.