Investigation of the dynamic properties of plate-like structures

Kahraman, Engin
This study presents the investigation and the verification of the modal parameters of a plate-like structure by using different modal analysis methods. A fin-like structure which is generally used in aircraft is selected as a subcategory of a plate-like test structure. In the first part of the thesis, the natural frequencies and the corresponding mode shapes of the fin are extracted by Finite Element Analysis method. Classical Modal Analysis and Testing methods comprising both impact hammer and modal shaker applications are then applied in order to obtain the modal parameters such as; resonance frequencies, mode shapes and damping ratios. In the second part, a recent modal analysis technique, Operational Modal Analysis, is also applied in the laboratory environment. Since Operational Modal Analysis method does not require any information of input forcing, the fin structure is tested under both mechanical and acoustical types of excitations without measuring the given input forces. Finally, Operational Modal Analysis and Testing is also performed under various flow conditions generated in the wind tunnel which may simulate the real operating environment for the fin structure. The modal parameters extracted under these flow conditions are then compared with the previously obtained Finite Element, Classical and Operational Modal Analyses results.


Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Analysis and design of a compliant variable stroke mechanism
TANIK, ENGİN; Söylemez, Eres (Elsevier BV, 2010-10-01)
In this paper, analysis and design of an underactuated compliant variable stroke mechanism are presented by employing its pseudo-rigid-body model (PRBM). During the design two cases are considered: prescribed output loading and constant input torque. It is shown that this mechanism is suitable where variable stroke is required corresponding to variable output loading. It is also observed that this mechanism is capable of providing nearly constant force over a wide range of input. The analysis and design app...
Assessment of second-order analysis methods presented in design codes
Yıldırım, Ufuk; Topkaya, Cem; Department of Civil Engineering (2009)
The main objective of the thesis is evaluating and comparing Second-Order Elastic Analysis Methods defined in two different specifications, AISC 2005 and TS648 (1980). There are many theoretical approaches that can provide exact solution for the problem. However, approximate methods are still needed for design purposes. Simple formulations for code applications were developed, and they are valid as acceptable results can be obtained within admissible error limits. Within the content of the thesis, firstly b...
Investigation of design and analyses principles of honeycomb structures
Aydıncak, İlke; Kayran, Altan; Department of Aerospace Engineering (2007)
In this thesis, design and analyses of honeycomb structures are investigated. Primary goal is to develop an equivalent orthotropic material model that is a good substitute for the actual honeycomb core. By replacing the actual honeycomb structure with the orthotropic model, during the finite element analyses, substantial advantages can be obtained with regard to ease of modeling and model modification, solution time and hardware resources . To figure out the best equivalent model among the approximate analy...
Structural optimization strategies via different optimization and solver codes and aerospace applications
Ekren, Mustafa; Kayran, Altan; Department of Aerospace Engineering (2008)
In this thesis, structural optimization study is performed by using three different methods. In the first method, optimization is performed using MSC.NASTRAN Optimization Module, a commercial structural analysis program. In the second method, optimization is performed using the optimization code prepared in MATLAB and MSC.NASTRAN as the solver. As the third method, optimization is performed by using the optimization code prepared in MATLAB and analytical equations as the solver. All three methods provide ce...
Citation Formats
E. Kahraman, “Investigation of the dynamic properties of plate-like structures,” M.S. - Master of Science, Middle East Technical University, 2011.