Reliabilty-based optimization of river bridges using artificial intelligence techniques

Download
2011
Turan, Kamil Hakan
Proper bridge design is based on consideration of structural, hydraulic, and geotechnical conformities at an optimum level. The objective of this study is to develop an optimization-based methodology to select appropriate dimensions for components of a river bridge such that the aforementioned design aspects can be satisfied jointly. The structural and geotechnical design parts uses a statisticallybased technique, artificial neural network (ANN) models. Therefore, relevant data of many bridge projects were collected and analyzed from different aspects to put them into a matrix form. ANN architectures are used in the objective function of the optimization problem, which is modeled using Genetic Algorithms with penalty functions as constraint handling method. Bridge scouring reliability comprises one of the constraints, which is performed using Monte-Carlo Simulation technique. All these mechanisms are assembled in a software framework, named as AIROB. Finally, an application built on AIROB is presented to assess the outputs of the software by focusing on the evaluations of hydraulic – structure interactions.

Suggestions

Comparison of ASCE/SEI standard (2010) and modal pushover based ground motion scaling procedures for pre-tensioned concrete bridges
Özgenoğlu, Müge; Arıcı, Yalın; Department of Civil Engineering (2015)
The seismic design and evaluation of large bridges is a demanding task owing to the significant size and the structural characteristics of these systems. Although elastic analysis methods are regarded as sufficient for common, uncritical bridges; complex analysis methods such as non-linear time history analysis (NTHA) are often required for non-standard and/or important bridges. The selection of the ground motions that will be used in non-linear time history analysis is a crucial task in this regard as the ...
Reliability-based optimization of river bridges using artificial intelligence techniques
Turan, K. Hakan; Yanmaz, Ali Melih (Canadian Science Publishing, 2011-10-01)
Proper bridge design is based on joint consideration of structural, hydraulic, and geotechnical conformities. An optimization-based methodology has been developed to obtain appropriate dimensions of a river bridge to meet these aspects. Structural and geotechnical design parts use a statistically-based artificial neural network (ANN) model. Therefore, relevant data were collected from many bridge projects and analyzed to form a matrix. Artificial neural network architectures are used in the objective functi...
Effect of vehicular and seismic loads on the performance of integral bridges
Erhan, Semih; Dicleli, Murat; Department of Engineering Sciences (2011)
Integral bridges (IBs) are defined as a class of rigid frame bridges with a single row of piles at the abutments cast monolithically with the superstructure. In the last decade, IBs have become very popular in North America and Europe as they provide many economical and functional advantages. However, standard design methods for IBs have not been established yet. Therefore, most bridge engineers depend on the knowledge acquired from performance of previously constructed IBs and the design codes developed fo...
Computer aided analysis of flow through river bridges
Yanmaz, Ali Melih (null; 2001-05-20)
The major failure mode of a bridge results mainly from hydraulic deficiencies in the design. Flow conditions through bridge openings should be investigated to observe the degree of hydraulic conformity for the given structural system. A computer program is developed to carry out hydraulic and structural computations jointly for bridges crossing rivers having irregular cross-sections with flood plains. The program has analysis and design options. In the analysis part of the program, steady state water surfac...
Multi-support seismic excitation of long span highway bridges
Gökdemir, Tunç; Askan Gündoğan, Ayşegül; Caner, Alp; Department of Civil Engineering (2017)
Seismic design and analysis are common practices in bridge engineering which require both knowledge and experience. Technical standards, such as CALTRANS (2010) and AASHTO (2007) provide guidance on the analysis with the methods ranging from Response Spectrum Analysis (RSA) to Time History Analysis (THA). These methods are usually sufficient for obtaining the seismic behavior of common structures and capture the dynamic behavior with decent accuracy. However, this may not be the case for structures which sp...
Citation Formats
K. H. Turan, “Reliabilty-based optimization of river bridges using artificial intelligence techniques,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.