Effect of vehicular and seismic loads on the performance of integral bridges

Download
2011
Erhan, Semih
Integral bridges (IBs) are defined as a class of rigid frame bridges with a single row of piles at the abutments cast monolithically with the superstructure. In the last decade, IBs have become very popular in North America and Europe as they provide many economical and functional advantages. However, standard design methods for IBs have not been established yet. Therefore, most bridge engineers depend on the knowledge acquired from performance of previously constructed IBs and the design codes developed for conventional jointed bridges to design these types of bridges. This include the live load distribution factors used to account for the effect of truck loads on bridge components in the design as well as issues related to the seismic design of such bridges. Accordingly in this study issues related to live load effects as well as seismic effects on IB components are addressed in two separate parts. In the first part of this study, live load distribution formulae for IB components are developed and verified. For this purpose, numerous there dimensional and corresponding two dimensional finite element models (FEMs) of IBs are built and analyzed under live load. The results from the analyses of two and three dimensional FEMs are then used to calculate the live load distribution factors (LLDFs) for the components of IBs (girders, abutments and piles) as a function of some substructure, superstructure and soil properties. Then, live load distribution formulae for the determination of LLDFs are developed to estimate to the live load moments and shears in the girders, abutments and piles of IBs. It is observed that the developed formulae yield a reasonably good estimate of live load effects in IB girders, abutments and piles. In the second part of this study, seismic performance of IBs in comparison to that of conventional bridges is studied. In addition, the effect of several structural and geotechnical parameters on the performance of IBs is assessed. For this purpose, three existing IBs and conventional bridges with similar properties are considered. FEMs of these IBs are built to perform nonlinear time history analyses of these bridges. The analyses results revealed that IBs have a better overall seismic performance compared to that of conventional bridges. Moreover, IBs with thick, stub abutments supported by steel H piles oriented to bend about their strong axis driven in loose to medium dense sand are observed to have better seismic performance. The level of backfill compaction is found to have no influence on the seismic performance of IBs.

Suggestions

Low-cycle fatigue performance of steel h-piles in integral bridges
Karalar, Memduh; Dicleli, Murat; Department of Engineering Sciences (2014)
Integral bridges are jointless bridges where the superstructure is connected monolithically with the abutments. Due to seasonal temperature changes the abutments are pushed against the approach fill and then pulled away, causing lateral displacements at the top of the piles that support the abutments. This may result in the reduction of their service life due to low-cycle fatigue effects. In this research, both analytical and experimental studies are conducted to investigate the effect of thermal induced cy...
Comparison of ASCE/SEI standard (2010) and modal pushover based ground motion scaling procedures for pre-tensioned concrete bridges
Özgenoğlu, Müge; Arıcı, Yalın; Department of Civil Engineering (2015)
The seismic design and evaluation of large bridges is a demanding task owing to the significant size and the structural characteristics of these systems. Although elastic analysis methods are regarded as sufficient for common, uncritical bridges; complex analysis methods such as non-linear time history analysis (NTHA) are often required for non-standard and/or important bridges. The selection of the ground motions that will be used in non-linear time history analysis is a crucial task in this regard as the ...
Reliabilty-based optimization of river bridges using artificial intelligence techniques
Turan, Kamil Hakan; Yanmaz, Ali Melih; Department of Civil Engineering (2011)
Proper bridge design is based on consideration of structural, hydraulic, and geotechnical conformities at an optimum level. The objective of this study is to develop an optimization-based methodology to select appropriate dimensions for components of a river bridge such that the aforementioned design aspects can be satisfied jointly. The structural and geotechnical design parts uses a statisticallybased technique, artificial neural network (ANN) models. Therefore, relevant data of many bridge projects were ...
Simulation of low cycle fatigue performance of steel H piles via finite element approach
Karalar, Memduh; Dicleli, Murat (2016-06-30)
Integral bridges are jointless bridges where the superstructure is connected monolithically with the abutments. Due to seasonal temperature changes the abutments are pushed against the approach fill and then pulled away, causing lateral displacements at the top of the piles that support the abutments as shown in Fig. 1. This may result in the reduction of their service life due to low-cycle fatigue effects. Although bridge engineers (Dicleli, 2000, French et al. 2004) have already predicted that low cycle f...
Estimation of Length Limits for Integral Bridges Built on Clay
Dicleli, Murat (2004-11-01)
In this paper, the maximum length limits for integral bridges built on clay are determined as a function of the ability of steel H-piles supporting the abutments to sustain thermal-induced cyclic displacements and the flexural capacity of the abutment. First, H-pile sections that can accommodate large plastic deformations are determined considering their local buckling instability. Then, a low-cycle fatigue damage model is used to determine the maximum cyclic deformations that such piles can sustain. Next, ...
Citation Formats
S. Erhan, “Effect of vehicular and seismic loads on the performance of integral bridges,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.