Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of a software for determination of kinetic parameters in thermal analysis
Download
index.pdf
Date
2011
Author
Ertunç, Göker
Metadata
Show full item record
Item Usage Stats
270
views
136
downloads
Cite This
In this thesis, a new software, THERA-Kinetics was developed for the evaluation of kinetic parameters using non-isothermal data. Different computational methods, available in the software, were applied to a set of experimental and simulated data distributed in the ICTAC (International Confederation for Thermal Analysis and Calorimetry) Kinetics Project. The reliability of the software was verified by comparing the kinetic results, which were in good agreement, with those obtained by the participants of the ICTAC Kinetics Project. It was also within the scope of this study to examine the combustion characteristics and kinetics of three same origin coal samples. A series of thermogravimetry (TG) and differential scanning calorimetry (DSC) measurements were carried out in non-isothermal conditions at heating rates of 5, 10 and 15 K/min. Reaction regions, peak and burn-out temperatures, weight loss percentages and heat of reactions of the samples were determined for each heating rate from TG and DSC curves. A variety of computational methods, available in the software developed, were applied to experimental data for the evaluation of the kinetic parameters of the coal samples. It was observed that there was no general trend in the activation energy values from the point of heating rate.
Subject Keywords
Thermal analysis
,
Thermogravimetry.
,
Coal
URI
http://etd.lib.metu.edu.tr/upload/12613624/index.pdf
https://hdl.handle.net/11511/21271
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermal Characterization and Model Free Kinetic Application on a Tar Sand Sample
Kök, Mustafa Verşan (2015-01-01)
In the first part of this research, kinetic software was developed for the evaluation of kinetic parameters using nonisothermal thermogravimetry data. Different computational methods were used and applied to a set of experimental and simulated data distributed in the ICTAC (International Confederation for Thermal Analysis and Calorimetry) kinetics project. The reliability of the software was verified by comparing the kinetic results and it was observed that the results were in good agreement. In the second ...
Development of an In-house Computer Code for the Thermal Analysis of Satellites Using Thermal Network Method and Method of Lines
Uygur, Ahmet Bilge; Isik, Hasan Guerguec; Solakoglu, Erhan; Yazicioglu, Almila Guevenc (2009-06-13)
This paper discusses the development of an in-house computer code for the thermal analysis of satellites. The code uses Thermal Network Method (TNM) in conjunction with the Method of Lines (MOL) for the solution of the energy equation in the presence of radiative heat transfer. The predictive accuracy of the code is demonstrated on a test problem involving a cubic satellite with two solar panels and a single representative payload at its center to account for all other possible equipments in the satellite. ...
An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation
Selcuk, A. M.; Öktem, Hüseyin Avni (Elsevier BV, 2009-08-01)
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transitio...
Investigation and comparison of the preprocessing algorithms for microarrayanalysis for robust gene expression calculation and performance analysis of technical replicates
İLK, HAKKI GÖKHAN; İlk Dağ, Özlem; KONU KARAKAYALI, ÖZLEN; ÖZDAĞ, Hilal (2006-04-19)
Preprocessing of microarray data involves the necessary steps of background correction, normalization and summarization of the raw intensity data obtained from cDNA or oligo-arrays before statistical analysis. Several algorithms, namely RMA, dChip, and MAS5 exist for the preprocessing of Affymetrix microarray data. Previous studies have identified RMA as one of most accurate algorithms while MAS5 was characterized with lower accuracy and sensitivity levels. In this study, performance of different preprocess...
Development of an Intelligent Least Squares Based Linear Controller for Autonomous Helicopters
Kubali, Eser; Yavrucuk, İlkay (2016-06-10)
In this paper, a novel PID gain update law using linear least squares regression is introduced as an adaptive control method for autonomous helicopters. In addition, prediction analysis is conducted for error dynamics of the closed loop system using recursive linear least squares regression. Combining these two concepts with classical PID controller, an intelligent PID controller is obtained. A flight controller with three control loops is developed to demonstrate the capabilities of the controller. Finally...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ertunç, “Development of a software for determination of kinetic parameters in thermal analysis,” M.S. - Master of Science, Middle East Technical University, 2011.