Vibration isolation of inertial measurement unit

Çınarel, Dilara
Sensitive devices are affected by extreme vibration excitations during operation so require isolation from high levels of vibration excitations. When these excitation characteristics of the devices are well known, the vibration isolation can be achieved accurately. However, it is possible to have expected profile information of the excitations with respect to frequency. Therefore, it is practical and useful to implement this information in the design process for vibration isolation. In this thesis, passive vibration isolation technique is examined and a computer code is developed which would assist the isolator selection process. Several sample cases in six degree of freedom are designed for a sample excitation and for sample assumptions defined for an inertial measurement unit. Different optimization methods for design optimizations are initially compared and then different designs are arranged according to the optimization results using isolators from catalogues for these sample cases. In the next step, the probable designs are compared according to their isolator characteristics. Finally, one of these designs are selected for each case, taking into account both the probable location deviations and property deviations of isolators.


Chatter detection using vibrational and acoustic emissions in turning process
Süleyman, Büyükkoçak; Kılıç, Şener; Özer, Mehmet Bülent; Ünver, Hakkı Özgür (null; 2013-09-20)
Chatter vibration is a longstanding problem for machining industry. It lowers both surface finish quality and life of cutting tool. In this study, real time chatter vibration detection system is designed and tested experimentally. A traditional lathe, equipped with two accelerometers placed on cutting tool in two orthogonal coordinates and a microphone, is used for machining a steel rod in face turning operation. During cutting process analog data of accelerometers and microphone is acquired by data acquisi...
Measurement of ground borne vibrations for foundation design and vibration isolation of a high-precision instrument
ÜLGEN, DENİZ; ERTUĞRUL, ÖZGÜR LÜTFİ; Özkan, M. Yener (2016-11-01)
This study focuses on the foundation design and vibration isolation of a high-precision instrument subjected to ground-borne vibrations. The allowable vibration level for the proper operation of the sensitive equipment was 50 mu g in a frequency range of 1-300 Hz. Prior to foundation design, first, an extensive field survey including geological and geophysical tests were performed in situ to obtain the static and dynamic physical properties of the soils. Next, vibration levels at various locations in the vi...
Vibration isolation system for space launch vehicles
Karaman, Burak; Özgen, Gökhan Osman; Department of Mechanical Engineering (2018)
In the frame of this thesis, novel vibration isolation systems for spaces launch vehicles are designed and verified by vibration tests in laboratory environment. Payloads, satellites or spacecraft, are exposed high level of vibration loads during launch. These vibration loads are transmitted from launch vehicle to the payload and may have a detrimental effect on the payload. Vibration isolation systems can be used at the payload-launch vehicle interface in order to reduce vibration environment of a payload....
Robustness Analysis of Intentional Mistuning Patterns in Randomly Mistuned Bladed Disk Assemblies
Yumer, M. E.; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2010-09-22)
It is known that bladed disks, which are usually designed as cyclically symmetric structures, undergo considerable amount of forced response amplitude magnification due to the phenomenon called mistuning. Mistuning is inevitable for any cyclically symmetric bladed disk assembly since it is caused by manufacturing tolerances, material properties and operational wear. Since reducing the level of mistuning beyond certain limits is not possible with the current technology, the attempts are rather made to reduce...
Vibration Analysis of a Simply Supported PCB with a Component-An Analytical Approach
Aytekin, Banu; Ozguven, Nevzat (2008-12-12)
It is a well known fact that vibration is one of the most important loading condition in electronic systems. This study deals with dynamic analysis of a printed circuit board (PCB) with a component on it under vibratory loading. The objective of the study is to develop an analytical model for common PCB configurations and electronic components on them in order to predict dynamics of the assembly under vibratory loading, and thus to study the effects of component location. As an application, in this paper an...
Citation Formats
D. Çınarel, “Vibration isolation of inertial measurement unit,” M.S. - Master of Science, Middle East Technical University, 2012.