Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hydraulic characteristics of tyrolean weirs having steel racks and circular-perforated entry
Date
2012
Author
Şahiner, Halit
Metadata
Show full item record
Item Usage Stats
344
views
0
downloads
Cite This
Tyrolean type water-intake structures are commonly used on mountain rivers to supply water to hydropower stations. The amount of water to be diverted from the main channel is the major concern in these kind of structures and should not be less than the design discharge. In this study a physical model of a Tyrolean type water-intake structure was built at the laboratory and the diverted flow from the main channel through the intake structure having steel racks and perforated plates of different types were measured. The experiments were conducted in two stages. In the first stage the tests were carried out with only steel racks having three different bar openings and slopes, and in the second stage, perforated screens of three different circular openings and screen slopes were used. Applying dimensional analysis to the related parameters of the system the dimensionless terms were defined for the water capture efficiency and discharge coefficient of the system, and their variations with the relevant parameters were plotted. Using these diagrams one can determine the amount of water to be diverted by a Tyrolean weir of known geometry and main channel discharge.
Subject Keywords
Hydraulic Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12614247/index.pdf
https://hdl.handle.net/11511/21324
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation Of Waterhammer Problems In Çamlidere Dam - İvedik Water Treatment Plant Pipeline At Various Hydraulic Conditions
Sakabaş, Emre; Bozkuş, Zafer; Department of Civil Engineering (2012)
Çamlıdere Dam supplies significant portion of the potable water demand of the City of Ankara. Consequently, it is very important that the pipelines extending over 60 km between the dam and the treatment plant at İvedik operate continuously. At present, two composite parallel lines are in operation and construction of a third line is considered for the future. It is the aim of this study to investigate the water hammer problems to be expected under various scenarios and also suggest the safe operation condit...
Hydraulic characteristics of tyrolean weirs
Yılmaz, Nazlı Aslıcan; Göğüş, Mustafa; Department of Civil Engineering (2010)
Tyrolean type water-intake structures are widely used on mountain rivers to provide water to hydropower stations. The main concern encountered in these kinds of structures is the amount of water diverted from the main channel and sediment carried by this flow. The diverted flow should not be less than the design discharge of the hydropower station and the amount of the sediment entering the hydraulic system should be minimum. In this study a physical model of a Tyrolean weir was constructed at the Hydromech...
Investigation of waterhammer problems in the penstocks of small hydropower plants
Çalamak, Melih; Bozkuş, Zafer; Department of Civil Engineering (2010)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of chara...
Utilization of CFD tools in the design process of a Francis turbine
Okyay, Gizem; Aydın, İsmail; Department of Civil Engineering (2010)
Francis type turbines are commonly used in hydropower generation. Main components of the turbine are spiral case, stay vanes, guide vanes, turbine runner and the draft tube. The dimensions of these parts are dependent mainly on the design discharge, head and the speed of the rotor of the generators. In this study, a methodology is developed for parametric optimization by incorporating Matlab codes developed and commercial Computational Fluid Dynamics (CFD) codes into the design process. The design process s...
Determination of optimum rack angle of tyrolean type water-intake structures
Melek, Abiddin Berhan; Göğüş, Mustafa; Department of Civil Engineering (2017)
Tyrolean weir is known as an effective device to separate major part of sediment from the main channel flow in order to provide required sediment-free water discharge for run-off river hydropower plants. Basically, in the design of Tyrolean weirs, the main concern is to divert at least the design discharge of the facility while it permits to enter the minimum amount of bed-sediment to the system. In this study, water and sediment capture rates of Tyrolean type water-intake structures were investigated for a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Şahiner, “Hydraulic characteristics of tyrolean weirs having steel racks and circular-perforated entry,” M.S. - Master of Science, Middle East Technical University, 2012.