An adaptive unscented kalman filter for tightly-coupled INS/GPS integration

Download
2012
Akça, Tamer
In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques and benefits of the two complementary systems are obtained at the same time. The standard and most widely used estimation algorithm in the INS/GPS integrated systems is Extended Kalman Filter (EKF). Linearization step involved in the EKF algorithm can lead to second order errors in the mean and covariance of the state estimate. Another nonlinear estimator, Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from the Gaussian distribution and propagating these points through the nonlinear function itself leading third order errors for any nonlinearity. Scaled Unscented Transformation (SUT) is one of the sigma point selection methods which gives the opportunity to adjust the spread of sigma points and control the higher order errors by some design parameters. Determination of these parameters is problem specific. In this thesis, effects of the SUT parameters on integrated navigation solution are investigated and an “Adaptive UKF” is designed for a tightly-coupled INS/GPS integrated system. Besides adapting process and v measurement noises, SUT parameters are adaptively tuned. A realistic fighter flight trajectory is used to simulate IMU and GPS data within Monte Carlo analysis. Results of the proposed method are compared with standard EKF and UKF integration. It is observed that the adaptive scheme used in the sigma point selection improves the performance of the integrated navigation system especially at the end of GPS outage periods.

Suggestions

An Adaptive Unscented Kalman Filter For Tightly Coupled INS/GPS Integration
Akca, Tamer; Demirekler, Mübeccel (2012-04-26)
In order to overcome the various disadvantages of standalone INS and GPS, these systems are integrated using nonlinear estimation techniques. The standard and most widely used estimation algorithm for the INS/GPS integration is Extended Kalman Filter (EKF) which makes a first order approximation for the nonlinearity involved. Unscented Kalman Filter (UKF) approaches this problem by carefully selecting deterministic sigma points from Gaussian distributions and propagating these points through the nonlinear f...
Identification of inertial sensor error parameters
Altınöz, Bağış; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2015)
Inertial sensors (gyroscopes and accelerometers) that are used in navigation systems have distinct error characteristics such as bias, scale factor, random walk, etc. Calibration and characterization tests are done with 2 or 3 axes rate tables in order to identify these errors. It is possible to utilize error characteristics of these devices, and the navigation accuracy is directly dependent on the accuracy of this identification process. In this thesis, inertial sensor error parameters are identified by a ...
Extended kalman filter based multi-purpose inertial sensor field calibration algorithm
Yaman, Lisan Ozan; Azgın, Kıvanç; Department of Mechanical Engineering (2017)
The Global Satellite Navigation System (GNSS) is widely adopted for common positioning system due to its precision, cost and effectiveness. Despite its advantages, GNSS receivers are susceptible to signal degradation both intentional cases such as jamming/spoofing and unintentional cases like signal blockage in urban environment due to tall buildings. On the other hand, dead reckoning navigation system such as Inertial Navigation System (INS) is immune to external interferences and it can supply continuous ...
A comparative study on tightly coupled visual aided inertial navigation systems for unmanned aerial vehicles
İnce, Talha; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2018)
An Inertial Navigation System (INS) is a combination of hardware (accelerometers and gyroscopes) and algorithms to calculate the position, orientation and velocity of a mobile platform. Because of the need to integrate the measurements over time, INS is subjected to cumulative error characteristics, hence cannot provide an accurate navigation solution over long durations. Global Positioning System (GPS) is often used for long time-long distance problems aiding INS. GPS relies on external signals received fr...
Reducing computational demand of multi-state constraint kalman filter in visual-inertial odometry applications
Eyice, Kerem; Çiloğlu, Tolga; Department of Electrical and Electronics Engineering (2019)
The aim of this study is to reduce the computational load required by Multi-State Constraint Kalman Filter in visual-inertial odometry applications while maintaining the accuracy of the localization solution. In order to accomplish this, a keyframe-based pose selection mechanism is proposed. The proposed method fuses visual measurements with inertial measurements in order to estimate the kinematics of the platform. The contribution of this study is to reduce computational demand of the filtering operations ...
Citation Formats
T. Akça, “An adaptive unscented kalman filter for tightly-coupled INS/GPS integration,” M.S. - Master of Science, Middle East Technical University, 2012.