Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Frequency domain optimization of dry friction dampers used for earthquake vibration damping of buildings
Download
index.pdf
Date
2012
Author
Erişen, Zühtü Eren
Metadata
Show full item record
Item Usage Stats
252
views
86
downloads
Cite This
There are many active and passive vibration control techniques to reduce the effect of energy on structures which emerges during an earthquake and reduce the displacement of buildings that is caused by ground acceleration. Main advantage of passive vibration control techniques over active vibration control techniques is; no external power or a sensor is required for passive vibration control devices (PVCDs) and it results in lower installation and maintenance costs. However, PVCDs require a predefined optimum damping ratio and optimum damping distribution along the structure since they are not adaptive to changing ground acceleration values. During the design of the PVCDs numerous factors such as building properties and earthquake characteristics should be considered. Dry friction damper is an example of PVCD and has an extensive usage in many different fields due to its high energy damping capacity with low cost and ease of installation. In this thesis, damping of seismic energy at buildings with dry friction dampers is investigated and a new optimization method is developed in frequency domain by employing Describing Function Method (DFM) which reduces the computational effort compared to the time domain and finite element solutions drastically. The accuracy and verification of the presented method is investigated by comparing the frequency domain results with time marching solutions. Furthermore, damper placement and slip forces on the dampers are optimized for single and multi-story buildings equipped with dry friction dampers by utilizing the developed method.
Subject Keywords
Vibration (Aeronautics)
,
Earthquake resistant design.
,
Buildings
URI
http://etd.lib.metu.edu.tr/upload/12614134/index.pdf
https://hdl.handle.net/11511/21415
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Static aeroelastic analysis of a generic slender missile using a loosely coupled fluid structure interaction method
Akgül, Mehmet; Sert, Cüneyt; Department of Mechanical Engineering (2012)
There are many active and passive vibration control techniques to reduce the effect of energy on structures which emerges during an earthquake and reduce the displacement of buildings that is caused by ground acceleration. Main advantage of passive vibration control techniques over active vibration control techniques is; no external power or a sensor is required for passive vibration control devices (PVCDs) and it results in lower installation and maintenance costs. However, PVCDs require a predefined optim...
Torsional hysteretic damper for seismic protection of structures
Salem Milani, Ali; Dicleli, Murat; Department of Engineering Sciences (2014)
During the past decades, use of supplementary systems for seismic control of structures has gained increasing acceptance, and research has flourished on development and performance characterization of such systems. These include isolation systems and energy dissipation devices (dampers). This study is devoted to development of a new hysteretic damper for seismic protection of structures. The new system is a stand-alone damper, named Multi-directional Torsional Hysteretic Damper (MTHD). MTHD is composed of e...
Experimental investigation of uplift on seismic base isolators /
Erkakan, Evren; Caner, Alp; Department of Civil Engineering (2014)
Elastomeric rubber bearings reinforced with steel shims, are used to provide structural support in vertical direction and allow horizontal movements for the structure subjected to earthquake and thermal loads. Generally, it is known that tensile stress or uplift may occur when the structure is subjected to strong ground motion or structure have large height-to-width aspect ratio to develop a stability concern subjected to lateral loads. The main focus of this research is to investigate the change in charact...
Frequency domain non-linear modelling and analysis of liquid filled column dampers
Kızılay, Hazım Sefa; Ciğeroğlu, Ender (Springer, Cham; 2019-02-20)
Tuned liquid column dampers (TLCDs) have an extensive usage as an effective vibration absorber to enhance the structure response under the effect of seismic or wind loads. In this study, parameter optimization of nonlinear model of a TLCD in frequency domain under harmonic excitation is proposed in order to improve performance of TLCDs. The non-linearity in the model is due to the head-loss caused by the orifice resulting in velocity squared damping. A 6-story building with a TLCD is considered as a case st...
Assessment of nonlinear static (pushover) analysis procedures using field experience
Dilsiz, Abdullah; Gülkan, Polat; Yakut, Ahmet; Department of Civil Engineering (2013)
Recently, many nonlinear analysis procedures have been proposed for earthquake response determination of the structures. Although, the nonlinear response history analysis (NRHA) is accepted as the most accurate source of information for nonlinear seismic response, nonlinear static procedures (NSP) may also provide reasonable estimates of seismic demand and inelastic behavior. However, all proposed NSPs have limitations, due to the certain approximations and simplifications, such as invariable load pattern a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. E. Erişen, “Frequency domain optimization of dry friction dampers used for earthquake vibration damping of buildings,” M.S. - Master of Science, Middle East Technical University, 2012.