Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Torsional hysteretic damper for seismic protection of structures
Download
index.pdf
Date
2014
Author
Salem Milani, Ali
Metadata
Show full item record
Item Usage Stats
295
views
170
downloads
Cite This
During the past decades, use of supplementary systems for seismic control of structures has gained increasing acceptance, and research has flourished on development and performance characterization of such systems. These include isolation systems and energy dissipation devices (dampers). This study is devoted to development of a new hysteretic damper for seismic protection of structures. The new system is a stand-alone damper, named Multi-directional Torsional Hysteretic Damper (MTHD). MTHD is composed of eight energy dissipaters in the shape of a cylinder with enlarged top and bottom. The cylindrical dissipaters are designed to yield in torsion created in them via arms while being supported against bending by a stiff central column. MTHD is capable of large force and displacement capacities, can be coupled with various types of bearings due to its 2-part configuration (upper rail system and lower base device) and shows a variable and controllable-via-design post-elastic stiffness. The new damper has gone through many stages of design refinement, prototype verification tests and development of computer codes to facilitate its implementation in practice. Practicality of the new device, as an offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification tests. The scope of this research includes all developmental phases of the MTHD device, including conceptual design, analytical and numerical studies and verification tests. The experimental part of the study is comprised of two phases: verification tests on a prototype MTHD, and a series of torsional low-cycle fatigue tests on cylindrical steel specimens. Torsional low-cycle fatigue tests were aimed at studying the fatigue performance of the cylindrical energy dissipaters of MTHD and to use the data in cyclic strain-life design.
Subject Keywords
Earthquake resistant design.
,
Buildings
,
Buildings
,
Torsion.
URI
http://etd.lib.metu.edu.tr/upload/12617261/index.pdf
https://hdl.handle.net/11511/23536
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of seismic isolation efficiency for building structures
Özdemir, Seda; Yakut, Ahmet; Ay, Bekir Özer; Department of Earthquake Studies (2016)
The main goal of this study is to assess the efficacy of seismic isolation for building type of structures with different structural systems, namely, dual systems and moment frame systems having also different number of floors. Specific to this study, the main parameters employed for efficacy assessment will be the interstorey drift ratio and floor acceleration since both structural and non-structural damage to be occured in a system are directly related to these two parameters. To assess the variations in inter...
Frequency domain optimization of dry friction dampers used for earthquake vibration damping of buildings
Erişen, Zühtü Eren; Ciğeroğlu, Ender; Department of Mechanical Engineering (2012)
There are many active and passive vibration control techniques to reduce the effect of energy on structures which emerges during an earthquake and reduce the displacement of buildings that is caused by ground acceleration. Main advantage of passive vibration control techniques over active vibration control techniques is; no external power or a sensor is required for passive vibration control devices (PVCDs) and it results in lower installation and maintenance costs. However, PVCDs require a predefined optim...
Assessment of nonlinear static (pushover) analysis procedures using field experience
Dilsiz, Abdullah; Gülkan, Polat; Yakut, Ahmet; Department of Civil Engineering (2013)
Recently, many nonlinear analysis procedures have been proposed for earthquake response determination of the structures. Although, the nonlinear response history analysis (NRHA) is accepted as the most accurate source of information for nonlinear seismic response, nonlinear static procedures (NSP) may also provide reasonable estimates of seismic demand and inelastic behavior. However, all proposed NSPs have limitations, due to the certain approximations and simplifications, such as invariable load pattern a...
Inelastic panel zone deformation demands in stell moment resisting frames
Tuna, Mehmet; Topkaya, Cem; Department of Civil Engineering (2012)
Panel zone is one of the significant parts of beam-column connections in steel structures. Until the 1994 Northridge Earthquake, a few experimental research and parametric studies had been carried out to understand the behavior of the panel zones. However, after the Northridge Earthquake, it was observed that beam-column connections were unable to show presumed seismic performance. Therefore, current design codes needed to be revised to improve seismic performance of connections in general and panel zones i...
Optimum design of multistep spur gearbox
Öztürk, Fatih Mehmet; Department of Mechanical Engineering (2005)
Optimum design of multistep gearbox, since many high-performance power transmission applications (e.g., automotive, space industry) require compact volume, has become an important interest area. This design application includes more complicated problems that are not taken into account while designing single stage gear drives. Design applications are generally made by trial and error methods depending on the experience and the intuition of the designer. In this study, using Visual Basic 6.0, an interactive p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Salem Milani, “Torsional hysteretic damper for seismic protection of structures,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.