Assessment of different finite element modeling techniques on delamination growth in advanced composite structures

Download
2012
Uçak, İbrahim
Virtual crack closure technique (VCCT) is commonly used to analyze debonding/delamination onset and growth in fiber reinforced composite assemblies. VCCT is a computational fracture mechanics based approach, and is based on Irwin’s crack closure integral. In this study, the debonding/delamination onset and growth potential in a bonded fiber reinforced composite skin-flange assembly is investigated using the VCCT. A parametric finite element analyses is conducted. The finite element analyses results are compared with coupon level experimental results available in the literature. The effects of different finite element modeling techniques are investigated. The bonded flange-assembly is modeled with pure solid (3D) elements, plane stress (2D) shell elements and plane strain (2D) shell elements. In addition, mesh density, element order and geometric non-linearity parameters are investigated as well. The accuracy and performance of these different modeling techniques are assessed. Finally, effect of initial defect location on delamination growth potential is investigated. The results presented in this study are expected to provide an insight to practicing engineers in the aerospace industry.

Suggestions

Effect of resin and fiber on the abrasion, impact and pressure resistance of cylindrical composite structures
Kaya, Derya; Yılmazer, Ülkü; Department of Chemical Engineering (2011)
The aim of this study was to investigate the effects of resin and fiber on the abrasion, impact and internal pressure resistances of fiber reinforced plastic composite pipes produced by continuous filament winding method. For this study, pipe samples were produced with different combinations of resin type, fiber type, fiber amount and fiber length. All the samples were tested in accordance with the related ISO (International Organization for Standardization), DIN (German Standardization Institution) and BSI...
Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
Seismic assessment of reinforced concrete beam-to-column connections under reversed cyclic loading
Akın, Umut; Burak Bakır, Burcu; Department of Civil Engineering (2011)
Prior experimental research clearly reveals that the performance of reinforced concrete frame structures under earthquake loading is closely related to the behavior of beam-to-column connection regions. In order for a reinforced concrete building to have an adequate response under high lateral deformations, beam-to-column connections should be able to preserve their integrity. However, even today beam-to-column connections are assumed to be rigid or elastic, leading to an incorrect estimation of the structu...
Determination of the elastic properties of amorphous materials: Case study of alkali-silica reaction gel
Moon, Juhyuk; Speziale, Sergio; Akgül, Çağla; KALKAN, BORA; Clark, Simon M; Monteiro, Paulo JM (Elsevier BV, 2013-12-01)
The gel formed during alkali-silica reaction (ASR) can lead to cracking and deterioration of a concrete structure. The elastic properties of the ASR gel using X-ray absorption and Brillouin spectroscopy measurements are reported. X-ray absorption was used to determine the density of the gel as a function of pressure, and the result yields an isothermal bulk modulus of 33 +/- 2 GPa. Brillouin spectroscopy was applied to measure isentropic bulk (24.9-34.0 GPa) and shear moduli (8.7-10.1 GPa) of the gel. The r...
Use of split-disk tests for the process parameters of filament wound epoxy composite tubes
Kaynak, Cevdet; PARNAS, LEVENT; ŞENEL, FİKRET (2005-08-01)
The aim of this study was to investigate processing parameters of continuous fiber reinforced epoxy composite tubes produced by the filament winding technique. For this purpose, split-disk tests (according to ASTM D-2290 standard) were performed for the specimens produced with two different epoxy resin systems, five different fiber materials and five different winding angles. By determining the hoop tensile strength and modulus of these specimens, the effects of three filament-winding processing parameters;...
Citation Formats
İ. Uçak, “Assessment of different finite element modeling techniques on delamination growth in advanced composite structures,” M.S. - Master of Science, Middle East Technical University, 2012.