Proteome analysis of hydrogen production mechanism of Rhodobacter capsulatus grown on different growth conditions

Peksel, Begüm
Rhodobacter capsulatus is a versatile organism capable of growing on different growth conditions including photofermentation in the presence of carbon source, aerobic respiration, anaerobic respiration in the presence of an external electron acceptor such as DMSO. The photofermentative growth of R.capsulatus results in hydrogen production which stands out as an environmentally harmless method to produce hydrogen and accepted as one of the most promising process. Due to the serious problems such as as global climate change and environmental pollution caused by the fossil fuels, there is an increasing requirement for a clean and sustainable energy source. Furtherrmore, the ability of R.capsulatus to fix nitrogen, to use solar energy makes it a model to study various aspects of its metabolism. Thus the goal of this study is to increase the potential in biohydrogen production with the photofermentative bacteria and to investigate the proteins playing roles in different growth modes of the bacteria. In the present study, protein profiles of Rhodobacter capsulatus grown on respiratory, anaerobic respiratory and photofermentative growth modes were obtained. LC-MS/MS system is used to analyze the proteome as a high throughput technique. Physiological analysis such as HPLC for the analysis of the carbon source consumption, GC and analysis of pigments were carried out to state the environmental conditions. As a result, total of 460 proteins were identified with 17 proteins being unique to particular growth condition. Ratios of the proteins in different growth conditions were compared and important proteins were highlighted.


Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides
Ipekoglu, Emre M.; Gocmen, Koray; Oz, Mehmet T.; Gurgan, Muazzez; Yucel, Meral (2017-03-01)
Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption ...
Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus
Sevinc, Pelin; Gündüz, Ufuk; EROĞLU, İNCİ; Yucel, Meral (2012-11-01)
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 degrees C) and light intensities (1500, 2000, 3000, 4000 and 50...
Direct synthesis of hydrogen storage alloys from their oxides
Tan, Serdar; Öztürk, Tayfur; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2011)
The aim of this study is the synthesis of hydrogen storage compounds by electrodeoxidation technique which offers an inexpensive and rapid route to synthesize compounds from oxide mixtures. Within the scope of this study, two hydrogen storage compounds, FeTi and Mg2Ni, are aimed to be produced by this technique. In the first part, effect of sintering conditions on synthesis of FeTi was studied. For this purpose, oxide pellets made out of Fe2O3-TiO2 powders were sintered at temperatures between 900 °C – 1300...
Modeling and simulation of photobioreactors for biological hydrogen production
Androga, Dominic Deo; Eroğlu, İnci; Uyar, Başar; Department of Biotechnology (2014)
In applications of photofermentative hydrogen production, maintaining optimal temperature, feed composition, pH range and light intensity is the most critical objective for growth and proper functioning of the photosynthetic bacteria. Response Surface Methodology was applied to optimize temperature and light intensity for indoor hydrogen production using Rhodobacter capsulatus. Surface and contour plots of the regressions models developed revealed a maximum hydrogen production rate of 0.566 mol H2/m3/h at 2...
Proteome-wide analysis of the functional roles of bacilysin biosynthesis in Bacillus subtilis
Özcengiz, Gülay; Demir, Mustafa; Karatas, Ayten Yazgan (2014-07-01)
The members of the genus Bacillus produce a wide variety of secondary metabolites with antimetabolic and pharmacological activities. Most of these metabolites are small peptides that have unusual components and chemical bonds and synthesized nonribosomally by multifunctional enzyme complexes called peptide synthetases. Bacilysin, being produced and excreted by certain strains of Bacillus subtilis, is one of the simplest peptide antibiotics known. It is a dipeptide with an N-terminal Lalanine and an unusual ...
Citation Formats
B. Peksel, “Proteome analysis of hydrogen production mechanism of Rhodobacter capsulatus grown on different growth conditions,” M.S. - Master of Science, Middle East Technical University, 2012.