Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides

2017-03-01
Ipekoglu, Emre M.
Gocmen, Koray
Oz, Mehmet T.
Gurgan, Muazzez
Yucel, Meral
Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption spectrum within 400-700nm. The hydrogen production capacity of the mutant strain was evaluated on hydrogen production medium with 15mM malate and 2mM glutamate. Hydrogen yield and productivity were increased by 13.6 and 22.6%, respectively, compared to the wild type strain. The results demonstrated the feasibility of genetic engineering to combine chlorophyll and bacteriochlorophyll biosynthetic pathways which utilize common intermediates. Heterologous expression of key enzymes from biosynthetic pathways of various pigments is proposed here as a general strategy to improve absorption spectra and yield of photosynthesis and hydrogen gas production in bacteria.
JOURNAL OF BASIC MICROBIOLOGY

Suggestions

Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors
Uyar, Basar; EROĞLU, İNCİ; Yucel, Meral; Gündüz, Ufuk; Turker, Lemi (2007-12-01)
Rhodobacter sphaeroides O.U. 001 is a purple non-sulfur bacterium which evolves hydrogen from the breakdown of organic acids under illumination and anaerobic conditions. In this study, the effect of light intensity, light wavelength and illumination protocol on the growth and hydrogen production of R. sphaeroides O.U. 001 was investigated in gas-tight glass photobioreactors with defined medium. The results showed Also it was found that the rate of hydrogen production increased with increasing light intensit...
Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus
Sevinc, Pelin; Gündüz, Ufuk; EROĞLU, İNCİ; Yucel, Meral (2012-11-01)
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 degrees C) and light intensities (1500, 2000, 3000, 4000 and 50...
Biological hydrogen production from olive mill wastewater and its applications to bioremediation
Eroğlu, Ela; Eroğlu, İnci; Department of Chemical Engineering (2006)
Hydrogen production by photosynthetic bacteria occurs under illumination in the presence of anaerobic atmosphere from the breakdown of organic substrates, which is known as photofermentation. In this study, single-stage and two-stage process development were investigated for photofermentative hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U.001 within indoor and outdoor photobioreactors. It was proven that diluted olive mill wastewater (OMW) could be utilized for photobiological...
Hydrogen gas production by combined systems of Rhodobacter sphaeroides OU001 and Halobacterium salinarum in a photobioreactor
Zabut, Baker; EI-Kahlout, Kamal; Yucel, Meral; Gündüz, Ufuk; Turker, Lemi; Eroglu, Inci (2006-09-01)
Rhodobacter sphaeroides O.U.001 is a photosynthetic non-sulfur bacterium which produces hydrogen from organic compounds under anaerobic conditions. Halobacterium salinarum is an archaeon and lives under extremely halophilic conditions (4 M NaCl). H. salinarum contains a retinal protein bacteriorhodopsin in its purple membrane which acts as a light-driven proton pump. In this study the Rhodobacter sphaeroides O.U.001 culture was combined with different amounts of packed cells of H. salinarum S9 or isolated p...
Hydrogen production by Rhodobacter sphaeroides OU001 in a flat plate solar bioreactor
Eroglu, Inci; Tabanoglu, Altan; Gündüz, Ufuk; Eroglu, Ela; Yucel, Meral (2008-01-01)
Rhodobacter sphaeroides O.U.001 can produce hydrogen under anaerobic conditions and illumination. The objective of this study was to investigate the performance of an 81 flat plate solar bioreactor operating in outdoor conditions. Different organic acids were used as carbon sources (malate, lactate and acetate) and olive mill waste water was used as a sole substrate source. The consumption and the production of the organic acids were determined by HPLC. The accumulation of by-products, such as poly-beta-hyd...
Citation Formats
E. M. Ipekoglu, K. Gocmen, M. T. Oz, M. Gurgan, and M. Yucel, “Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides,” JOURNAL OF BASIC MICROBIOLOGY, pp. 238–244, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68199.