Biological hydrogen production from olive mill wastewater and its applications to bioremediation

Eroğlu, Ela
Hydrogen production by photosynthetic bacteria occurs under illumination in the presence of anaerobic atmosphere from the breakdown of organic substrates, which is known as photofermentation. In this study, single-stage and two-stage process development were investigated for photofermentative hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U.001 within indoor and outdoor photobioreactors. It was proven that diluted olive mill wastewater (OMW) could be utilized for photobiological hydrogen production as a sole substrate source. However, pretreatment of the system is needed to reduce the dark color and bacteriostatic effects of OMW. In this study, several two stage processes including pretreatment of OMW followed by photofermentation were investigated to increase the hydrogen production yields in addition to the significant remediation of OMW. Explored pretreatment methods contain chemical oxidation with ozone or Fenton’s reagent, photodegradation by UV radiation, adsorption with clay or zeolite and dark fermentation with acclimated or non-acclimated sewage sludge. Among these different two-stage processes; clay treatment method resulted the highest hydrogen production capacity. As a result of clay pretreatment, 65% of the initial color and 81% of the phenolic content were decreased. Hydrogen production capacity was 16 LH2/LOMW without pretreatment, while it was enhanced up to 29 LH2/LOMW by two-stage processes. Moreover, clay pretreatment process made it possible to utilize highly concentrated OMW (50% and 100%) media for hydrogen production and for remediation. On the aspects of environment, treatment of OMW was achieved in the present work. The final composition of the organic pollutants in the effluent of two-stage processes was below the wastewater discharge limits. The overall results obtained throughout this study may open a new opportunity for the olive oil industry and for the biohydrogen area as a result of the effective biotransformation of OMW into hydrogen gas and valuable by-products.


Kinetic analyses of the effects of temperature and light intensity on growth, hydrogenm production and organic acid utilization by rhodobacter capsulatus
Sevinç, Pelin; Gündüz, Ufuk; Department of Biotechnology (2010)
Effects of temperature and light intensity on photofermentative hydrogen production by Rhodobacter capsulatus DSM1710 by use of acetic and lactic acids as substrates were studied. Experiments were conducted at 20, 30 and 38oC incubator temperatures under light intensities in the 1500 – 7000 lux range. pH of the medium and quantity of hydrogen forming together with quantity of biomass, and concentrations of acetic, lactic, formic, butyric and propionic acids in the medium were determined periodically. Growth...
BOZOGLU, F; OZILGEN, M; BAKIR, U (Elsevier BV, 1987-09-01)
Survival kinetics of lactic acid starter cultures were modeled considering the microorganism and external medium interfacial area as the critical factors determining the resistance of the microorganisms to freeze-drying. Surviving fraction of the microorganisms increased with the increasing biomass concentration during freeze-drying, and this is attributed to the mutual shielding effect of the microorganisms against the severe conditions of the external medium. Survival of the microorganisms over the storag...
Fe-catalyzed sulfide oxidation in hydrothermal plumes is a source of reactive oxygen species to the ocean
Shaw, Timothy J.; Luther, George W.; Rosas, Richard; Oldham, Veronique E.; Coffey, Nicole R.; Ferry, John L.; Dias, Dewamunnage M. C.; Yücel, Mustafa; de Chanvalon, Aubin Thibault (2021-10-01)
Historically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentratio...
Metabolic Flux Analysis for Recombinant Protein Production by Pichia pastoris Using Dual Carbon Sources: Effects of Methanol Feeding Rate
Celik, Eda; Çalık, Pınar; Oliver, Stephen G. (Wiley, 2010-02-01)
The intracellular metabolic fluxes through the central carbon pathways in the bioprocess for recombinant human erythropoietin (rHuEPO) production by Pichia pastoris (Mut(+)) were calculated. to investigate the metabolic effects of dual carbon sources (methanol/sorbitol) and the methanol feed rate, and to obtain a deeper understanding the regulatory circuitry of P. pastoris, using the established stoichiometry-based model containing 102 metabolites and 141 reaction fluxes. Four fed-batch operations with (MS-...
Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase
Çalık, Pınar (Elsevier BV, 2001-07-01)
The metabolic fluxes through the central carbon pathways were calculated for the genus Bacillus separately for the enzymes serine alkaline protease (SAP), neutral protease (NP) and alpha -amylase (AMY) on five carbon sources that have different reduction degrees (gamma), to determine the theoretical ultimate limits of the production capacities of Bacillus species and to predict the selective substrate for the media design. Glucose (gamma = 4.0), acetate (gamma = 4.0), and the TCA cycle organic-acids succina...
Citation Formats
E. Eroğlu, “Biological hydrogen production from olive mill wastewater and its applications to bioremediation,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.