Fully computable convergence analysis of discontinous Galerkin finite element approximation with an arbitrary number of levels of hanging nodes

Download
2012
Özışık, Sevtap
In this thesis, we analyze an adaptive discontinuous finite element method for symmetric second order linear elliptic operators. Moreover, we obtain a fully computable convergence analysis on the broken energy seminorm in first order symmetric interior penalty discontin- uous Galerkin finite element approximations of this problem. The method is formulated on nonconforming meshes made of triangular elements with first order polynomial in two di- mension. We use an estimator which is completely free of unknown constants and provide a guaranteed numerical bound on the broken energy norm of the error. This estimator is also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and higher order data oscillation terms. Consequently, the estimator yields fully reliable, quantitative error control along with efficiency. As a second problem, explicit expression for constants of the inverse inequality are given in 1D, 2D and 3D. Increasing mathematical analysis of finite element methods is motivating the inclusion of mesh dependent terms in new classes of methods for a variety of applications. Several inequalities of functional analysis are often employed in convergence proofs. Inverse estimates have been used extensively in the analysis of finite element methods. It is char- acterized as tools for the error analysis and practical design of finite element methods with terms that depend on the mesh parameter. Sharp estimates of the constants of this inequality is provided in this thesis.

Suggestions

Unification of Stieltjes-Calogero type relations for the zeros of classical orthogonal polynomials
ALICI, HAYDAR; Taşeli, Hasan (2015-09-30)
The classical orthogonal polynomials (COPs) satisfy a second-order differential equation of the form sigma(x)y '' + tau(x)y' + lambda y = 0, which is called the equation of hypergeometric type (EHT). It is shown that two numerical methods provide equivalent schemes for the discrete representation of the EHT. Thus, they lead to the same matrix eigenvalue problem. In both cases, explicit closed-form expressions for the matrix elements have been derived in terms only of the zeros of the COPs. On using the equa...
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Periodic solutions and stability of differential equations with piecewise constant argument of generalized type
Büyükadalı, Cemil; Akhmet, Marat; Department of Mathematics (2009)
In this thesis, we study periodic solutions and stability of differential equations with piecewise constant argument of generalized type. These equations can be divided into three main classes: differential equations with retarded, alternately advanced-retarded, and state-dependent piecewise constant argument of generalized type. First, using the method of small parameter due to Poincaré, the existence and stability of periodic solutions of quasilinear differential equations with retarded piecewise constant...
Hybrid Surface Integral Equations for Optimal Analysis of Perfectly Conducting Bodies
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-07-24)
We consider hybrid formulations involving simultaneous applications of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the combined-field integral equation (CFIE) for the electromagnetic analysis of three-dimensional conductors with arbitrary geometries. By selecting EFIE, MFIE, and CFIE regions on a given object, and optimizing these regions in accordance with the simulation requirements, one can construct an optimal hybrid-field integral equation (HFIE) that p...
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Citation Formats
S. Özışık, “Fully computable convergence analysis of discontinous Galerkin finite element approximation with an arbitrary number of levels of hanging nodes,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.