Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fate of nonylphenol compounds in aerobic batch reactors
Download
index.pdf
Date
2012
Author
Ömeroğlu, Seçil
Metadata
Show full item record
Item Usage Stats
215
views
92
downloads
Cite This
Today, numerous studies indicate the presence of synthetic organics such as nonylphenol (NP) compounds in wastewater. NP compounds are a group of chemicals including nonylphenol, nonylphenol polyethoxylates (NPnEO) and nonylphenoxy polyethoxy acetic acids (NPnEC). Since NP compounds have significant industrial, commercial and domestic use, they enter environmental systems and reach human beings from various pathways. Their presence is of concern because they are toxic, carcinogenic and endocrine disrupting due to their ability to mimic oestrogen hormone. The information available on the degradation of NPnEOs, is such that degradation starts with the reduction of ethylene oxide units, resulting in the formation of nonylphenol, nonylphenol mono- or diethoxylate (NP1EO and NP2EO) and nonylphenoxy acetic acid (NP1EC). Although their fate during wastewater treatment was investigated in the past, not many research investigating their fate in sludge treatment can be found. Therefore, the objective of this study is first to come up with reliable extraction and measurement methods for NP compounds and then to investigate the fate of NP2EO in aerobic digesters. After the development of techniques for the extraction and measurement of NP compounds, aerobic reactors spiked with NP2EO were operated. The samples were analyzed for solids content, COD, pH and NP compounds. The results showed that NP2EO degrades rapidly under aerobic conditions. As time proceeded, NP1EC formation was observed with the degradation of NP2EO, and NP1EC became the dominant specie. The solids concentration measurements showed that concentration of NP compounds did not affect the efficiency of aerobic digesters.
Subject Keywords
Sewage sludge.
,
Nonylphenol.
,
Aerobic bacteria.
,
Acetic acid.
URI
http://etd.lib.metu.edu.tr/upload/12614365/index.pdf
https://hdl.handle.net/11511/21545
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Fate and degradation kinetics of nonylphenol compounds in aerobic batch digesters
Omeroglu, Seçil; Sanin, Faika Dilek (2014-11-01)
Nonylphenol (NP) compounds are toxic and persistent chemicals that are not fully degraded either in natural or engineered systems. Current knowledge indicates that these compounds concentrate in sewage sludge. Therefore, investigating the degradation patterns and types of metabolites formed during sludge treatment are important for land application of sewage sludge. Unfortunately, the information on the fate of nonylphenol compounds in sludge treatment is very limited. This study aims to investigate the bio...
Fate of nonyphenol componds in aerobic semi-continuous reactor
Ahmad., Muneer; Sanin, Faika Dilek; Department of Environmental Engineering (2012)
In the last few decades, numerous studies have been conducted on xenobiotic compounds due to their vast use in industries, households, etc. and consequently high exposure of these compounds. The main focus of this study is nonylphenol compounds such as nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), nonylphenoxy acetic acid (NP1EC) and nonylphenol (NP), which are among the harmful xenobiotic compounds that can cause endocrine disruption, cancer and other health problems and which are u...
Source Apportionment of Personal Exposure to Fine Particulate Matter and Volatile Organic Compounds using Positive Matrix Factorization
PEKEY, HAKAN; PEKEY, BEYHAN; ARSLANBAŞ, DEMET; BOZKURT, ZEHRA; DOĞAN, GÜRAY; Tuncel, Süleyman Gürdal (2013-01-01)
The objective of this study was to identify potential sources of personal exposure to fine particulate matter (PM2.5), volatile organic compounds (VOCs), NO2, SO2, and O-3 in an urban and industrial area of Turkey between May 2006 and January 2007. Personal exposures were determined once per person in 28 adults over a 24-h period. Energy dispersive Xray fluorescence and a wavelength dispersive X-ray fluorescence spectrometry were used to measure 15 elements in PM2.5, including Al, As, Ca, Cr, Cu, Fe, K, Mn,...
Investigation of activated sludge bioflocculation : influence of magnesium ions
Turtin, İpek; Sanin, Faika Dilek; Department of Environmental Engineering (2005)
Activated sludge systems are the most widely used biological wastewater treatment processes all over the world. The main working principles of an activated sludge system are the oxidation of biologically degradable wastes by microorganisms and the subsequent separation of the newly formed biomass from the treated effluent. Separation by settling is the most troublesome stage of an activated sludge process. A decrease in the efficiency of the separation of microbial biomass from the treated effluent causes a...
Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater
Tekin, Huseyin; BİLKAY, Okan; Ataberk, Selale S.; Balta, Tolga H.; Ceribasi, I. Haluk; Sanin, Faika Dilek; Dilek, Filiz Bengü; Yetiş, Ülkü (2006-08-21)
The applicability of Fenton's oxidation to improve the biodegradability of a pharmaceutical wastewater to be treated biologically was investigated. The wastewater was originated from a factory producing a variety of pharmaceutical chemicals. Treatability studies were conducted under laboratory conditions with all chemicals (having COD varying from 900 to 7000 mg/L) produced in the factory in order to determine the operational conditions to utilize in the full-scale treatment plant. Optimum pH was determined...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ömeroğlu, “Fate of nonylphenol compounds in aerobic batch reactors,” M.S. - Master of Science, Middle East Technical University, 2012.