Hydrothermally grown zinc oxide nanowires and their utilization in light emitting diodes and photodetectors

Download
2012
Ateş, Elif Selen
Zinc oxide, with its direct wide bandgap and high exciton binding energy, is a promising material for optoelectronic devices. Quantum confinement effect and high surface to volume ratio of the nanowires imparts unique properties to them and makes them appealing for researchers. So far, zinc oxide nanowires have been used to fabricate various optoelectronic devices such as light emitting diodes, solar cells, sensors and photodetectors. To fabricate those optoelectronic devices, many different synthesis methods such as metal organic chemical vapor deposition, chemical vapor deposition, pulsed laser deposition, electrodeposition and hydrothermal method have been explored. Among them, hydrothermal method is the most feasible one in terms of simplicity and low cost. In this thesis, hydrothermal method was chosen to synthesize zinc oxide nanowires. Synthesized zinc oxide nanowires were then used as electrically active components in light emitting diodes and ultraviolet photodetectors. Hybrid light emitting diodes, composed of inorganic/organic hybrids are appealing due to their flexibility, lightweight nature and low cost production methods. Beside the zinc oxide nanowires, complementary poly [2- methoxy -5- (2- ethylhexyloxy) - 1,4 -phenylenevinylene] MEH-PPV and poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) hole conducting polymers were used to fabricate hybrid light emitting diodes in this work. Optoelectronic properties of the fabricated light emitting diodes were investigated. Zinc oxide emits light within a wide range in the visible region due to its near band edge and deep level emissions. Utilizing this property, violet-white light emitting diodes were fabricated and characterized. Moreover, to take advantage over the responsivity of zinc oxide to ultraviolet light, ultraviolet photodetectors utilizing hydrothermally grown zinc oxide nanowires were fabricated. Single walled carbon nanotube (SWNT) thin films were used as transparent electrodes for the photodetectors. Optoelectronic properties of the transparent and flexible devices were investigated. A high on-off current ratio around 260000 and low decay time about 16 seconds were obtained. Results obtained in this thesis reveal the great potential of the use of solution grown zinc oxide nanowires in various optoelectronic devices that are flexible and transparent.

Suggestions

Hydrothermal method for doping of zinc oxide nanowires and fabrication of ultraviolet photodetectors
Afal, Ayşegül; Ünalan, Hüsnü Emrah; Turan, Raşit; Department of Metallurgical and Materials Engineering (2012)
Nanotechnology comprises of the understanding and control of materials and processes at the nanoscale. Among various nanostructured materials, semiconducting nanowires attract much interest for their novel physical properties and potential device applications. The unique properties of these nanowires are based on their high surface to volume ratio and quantum confinement effect. Zinc oxide, having a direct, wide bandgap and large exciton binding energy, is highly appealing for optoelectronic devices. Due to...
Clean and efficient microwave-solvent-free conversion of homochiral amines, alpha-amino alcohols and alpha-amino acids to their chiral 2-substituted pyrrole derivatives
Aydogan, F; Demir, Ayhan Sıtkı (Elsevier BV, 2005-03-21)
Efficient synthesis of 1,2-disubstituted homochiral pyrroles has been achieved by a two-component coupling of chloroenones and amine compounds on the surface of silica gel without any solvent under microwave irradiation.
Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt
AKGUN, Mehmet Can; Kalay, Yunus Eren; Ünalan, Hüsnü Emrah (2012-06-01)
Hydrothermal approach is widely used for the synthesis of zinc oxide (ZnO) nanowires. Zinc nitrate hexahydrate, zinc acetate and zinc chloride are three common salts that are used for synthesis. Among these, zinc nitrate hexahydrate is primarily used in many studies and zinc chloride is preferred for electrodeposition. In this work, zinc acetate dihydrate salt is used for the growth of ZnO nanowires and the effects of time, temperature, solution concentration and concentration ratios of the precursor chemic...
Nanoscale surface finishing studies and characterizations of cadmium zinc telluride crystals
Kabukcuoğlu, Merve Pınar; Turan, Raşit; Department of Physics (2016)
Cadmium Zinc Telluride (Cd1-xZnxTe, CdZnTe) crystals are used in two different applications depending on Zinc (Zn) concentrations. CdZnTe crystals are one of the most promising materials for X-ray and gamma-ray detector applications due to unique material properties such as high atomic number and high resistivity. Wide band gap and high stopping potential of CdZnTe crystals allow operation at room temperature for high performance detectors with several applications including medical imaging, astronomy, and ...
Bactericidal and in vitro osteogenic activity of nano sized cobalt-doped silicate hydroxyapatite
Alshemary, Ammar Z.; Hussain, Rafaqat; Dalgic, Ali Deniz; Evis, Zafer (2022-10-01)
Hydroxyapatite (HA) particles with enhanced antibacterial properties can be prepared by integrating metal ions into the crystal structure of the nanoparticles. Cobalt and silicate ions containing HA (Co/Si-HA) with the formula Ca10-xCox(PO4)6-y(SiO4)y(OH)2 (x = 0.2, 0.6, and 1.0 and y = 0.5) was successfully synthesised by using microwave-assisted wet precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and inductively coupled...
Citation Formats
E. S. Ateş, “Hydrothermally grown zinc oxide nanowires and their utilization in light emitting diodes and photodetectors,” M.S. - Master of Science, Middle East Technical University, 2012.