Generalized finitedifference method in elastodynamics using perfectly matched layer

Download
2012
Korkut, Fuat
This study deals with the use of the generalized finite difference method (GFDM) in perfectly matched layer (PML) analysis of the problems in wave mechanics, in particular, in elastodynamics. It is known that PML plays the role of an absorbing layer, for an unbounded domain, eliminating reflections of waves for all directions of incidence and frequencies. The study is initiated for purpose of detecting any possible advantages of using GFDM in PML analysis: GFDM is a meshless method suitable for any geometry of the domain, handling the boundary conditions properly and having an easy implementation for PML analysis. In the study, first, a bounded 2D fictitious plane strain problem is solved by GFDM to determine its appropriate parameters (weighting function, radius of influence, etc.). Then, a 1D semi-infinite rod on elastic foundation is considered to estimate PML parameters for GFDM. Finally, the proposed procedure, that is, the use of GFDM in PML analysis, is assessed by considering the compliance functions (in frequency domain) of surface and embedded rigid strip foundations. The surface foundation is assumed to be supported by three types of soil medium: rigid strip foundation on half space (HS), on soil layer overlying rigid bedrock, and on soil layer overlying HS. For the embedded rigid strip foundation, the supporting soil medium is taken as HS. In addition of frequency space analyses stated above, the direct time domain analysis is also performed for the reaction forces of rigid strip foundation over HS. The results of GFDM for both frequency and time spaces are compared with those of finite element method (FEM) with PML and boundary element method (BEM), when possible, also with those of other studies. The excellent matches observed in the results show the reliability of the proposed procedure in PML analysis (that is, of using GFDM in PML analysis).

Suggestions

Generalized finite differences for the solution of one dimensional elastic plastic problems of nonhomogeneous materials
Uygur, Pelin; Tokdemir, Turgut; Department of Engineering Sciences (2007)
In this thesis, the Generalized Finite Difference (GFD) method is applied to analyze the elastoplastic deformation behavior of a long functionally graded (FGM) tube subjected to internal pressure. First, the method is explained in detail by considering the elastic response of a rotating FGM tube. Then, the pressurized tube problem is treated. A long FGM tube with fixed ends (axially constrained ends) is taken into consideration. The two cases in which the modulus of elasticity only and both the modulus of e...
The use of generalized finite difference method in perfectly matched layer analysis
Korkut, Fuat; Tokdemir, Turgut; Mengi, Yalcin (2018-08-01)
This study deals with the use of Generalized Finite Difference Method (GFDM) in Perfectly Matched layer (PML) analysis. There are two options for performing PML analysis. First option is to express PML equations in terms of real coordinates of the points in actual (real) PML region; the second is to use governing equations (expressed in terms of complex stretching coordinates) as they are in complex PML region. The first option is implemented in this study; the implementation of the second option is under w...
The relativistic Burgers equation on a Friedmann–Lemaître–Robertson–Walker (FLRW) background and its finite volume approximation
Ceylan, Tuba; Okutmuştur, Baver; LeFloch, Philippe G.; Department of Mathematics (2015)
In this thesis, applications of generalized integral inequalities especially on biomathematics and physics are studied. Application on Biomathematics is about the predatorprey dynamic systems with Beddington DeAngelis type functional response and application on physics is about water percolation equation. This thesis consists 6 chapters. Chapter 1 is introductory and contains the thesis structure. Chapter 2 is about under which conditions the two dimensional predator-prey dynamic system with Beddington DeAn...
Adaptive discontinuous galerkin methods for non-linear reactive flows
Uzunca, Murat; Karasözen, Bülent; Department of Mathematics (2014)
The aim of this thesis is to solve the convection/reaction dominated non-stationary semi-linear diffusion-convection-reaction problems with internal/boundary layers in an accurate and efficient way using a time-space adaptive algorithm. We use for space discretization the symmetric interior penalty discontinuous Galerkin method, and backward Euler for time discretization. Our main interest is to derive robust residual-based a posteriori error estimators both in space and time. To derive the a posteriori bou...
Comparison of dispersive and non-dispersive numarical long wave models and harbor agitation
Özbay, Ali; Yalçıner, Ahmet Cevdet; Department of Civil Engineering (2012)
In this study, the evolution of the numerical water wave models with the theoretical background and the governing equations are briefly discussed and a numerical model MIKE21 BW which can be applied to wave problems in nearshore zone is presented. The numerical model is based on the numerical solution of the Boussinesq type equations formulated on time domain. Nonlinearity and frequency dispersion is included in the model. In order to make comparison between the results of nonlinear shallow water equations ...
Citation Formats
F. Korkut, “Generalized finitedifference method in elastodynamics using perfectly matched layer,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.