Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The relativistic Burgers equation on a Friedmann–Lemaître–Robertson–Walker (FLRW) background and its finite volume approximation
Download
index.pdf
Date
2015
Author
Ceylan, Tuba
Metadata
Show full item record
Item Usage Stats
34
views
20
downloads
Cite This
In this thesis, applications of generalized integral inequalities especially on biomathematics and physics are studied. Application on Biomathematics is about the predatorprey dynamic systems with Beddington DeAngelis type functional response and application on physics is about water percolation equation. This thesis consists 6 chapters. Chapter 1 is introductory and contains the thesis structure. Chapter 2 is about under which conditions the two dimensional predator-prey dynamic system with Beddington DeAngelis type functional response is permenent and globally attractive. Chapter 3 is about the same type dynamic system but with impulses. In that chapter under which conditions the dynamic system has at least one periodic solution is investigated. To get the result we use Continuation Theorem. Using impulse on this type of dynamic system is also important. Because we can model the real life much better by this way. In Chapter 4, the predator-prey dynamic system with Beddington DeAngelis type functional response on periodic time scales in shifts is studied. In this chapter, first we prove which kind of periodic time scales in shifts should be used to find there is at least one δ±-periodic solution for the given system. Then again by using Continuation Theorem we get the desired result. In Chapter 5, first we generalize the Constantin’s Inequality on Nabla and Diamond-α calculus on time scales. Then by using a topological transversality theorem and using the generalization of Constantin’s Inequality on Nabla Calculus, we have showed that the vwater percolation equation on nabla time scales calculus has solution. This solution is unique and bounded. The last chapter is the summary of what we have done in this thesis. As a result, since this study is on time scales, the findings are also important on the discrete and continuous case.
Subject Keywords
Burgers equations.
,
Euler equations.
,
Finite volume method.
,
Numerical analysis.
URI
http://etd.lib.metu.edu.tr/upload/12618489/index.pdf
https://hdl.handle.net/11511/24472
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The Compressible euler system and its numerical analysis
Yılmaz, Eda; Okutmuştur, Baver; Department of Mathematics (2019)
In this thesis we analyze the compressible Euler equations in one and two dimensions. For this purpose, we firstly consider a particular form of this system, namely the inviscid Burgers equation, which can be derived by imposing vanishing pressure to the Euler system. The inviscid Burgers equation leads us to understand the idea behind discontinuous solutions such as shock and rarefaction waves. A brief analysis of smooth and weak solutions with necessary conditions for choosing physically meaningful soluti...
On generalized integral inequalities with applications in bio-mathematics and physical sciences
Pelen, Neslihan Nesliye; Önsiper, Mustafa Hurşit; Güvenilir, Ayşe Feza; Department of Mathematics (2015)
In this thesis, applications of generalized integral inequalities especially on biomathematics and physics are studied. Application on Biomathematics is about the predatorprey dynamic systems with Beddington DeAngelis type functional response and application on physics is about water percolation equation. This thesis consists 6 chapters. Chapter 1 is introductory and contains the thesis structure. Chapter 2 is about under which conditions the two dimensional predator-prey dynamic system with Beddington DeAn...
Generalized finitedifference method in elastodynamics using perfectly matched layer
Korkut, Fuat; Tokdemir, Turgut; Department of Engineering Sciences (2012)
This study deals with the use of the generalized finite difference method (GFDM) in perfectly matched layer (PML) analysis of the problems in wave mechanics, in particular, in elastodynamics. It is known that PML plays the role of an absorbing layer, for an unbounded domain, eliminating reflections of waves for all directions of incidence and frequencies. The study is initiated for purpose of detecting any possible advantages of using GFDM in PML analysis: GFDM is a meshless method suitable for any geometry...
The dual reciprocity boundary element solution of helmholtz-type equations in fluid dynamics
Alsoy Akgün, Nagehan; Tezer Sezgin, Münevver; Department of Mathematics (2013)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator ar...
An Application of the rayleigh-ritz method to the integral-equation representation of the one-dimensional schrödinger equation
Kaya, Ruşen; Taşeli, Hasan; Department of Mathematics (2019)
In this thesis, the theory of the relations between differential and integral equations is analyzed and is illustrated by the reformulation of the one-dimensional Schrödinger equation in terms of an integral equation employing the Green’s function. The Rayleigh- Ritz method is applied to the integral-equation formulation of the one-dimensional Schrödinger equation in order to approximate the eigenvalues of the corresponding singular problem within the desired accuracy. The outcomes are compared with those r...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Ceylan, “The relativistic Burgers equation on a Friedmann–Lemaître–Robertson–Walker (FLRW) background and its finite volume approximation,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.