Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of nanoencapsulation of purified polyphenolic powder on encapsulation efficiency, storage and baking stability
Download
index.pdf
Date
2012
Author
Luca, Alexandru
Metadata
Show full item record
Item Usage Stats
280
views
169
downloads
Cite This
The primary objective of this study was to obtain nano-emulsion containing polyphenolic compounds extracted from sour cherry pomace and to investigate the effect of degritting of polyphenolic concentrates on the encapsulation efficiency and particle size distribution of capsules and emulsions. It was also aimed to study storage and baking stability of the capsules. Extracted polyphenolic concentrate was degritted at 10,000 rpm for 2 min. Purification reduced Sauter mean diameter (D[32]) of concentrated extract from 5.76 μm to 0.41 μm. Unpurified and purified concentrates were freeze dried for 48 h to obtain extracted phenolic powder (EPP) and purified extracted phenolic powder (PEPP), respectively. Powders were entrapped in two types of coating materials which contain 10% maltodextrin (MD) or 8% MD-2% gum arabic (GA). Samples were prepared by ultrasonication (160 W, 50% pulse) for 20 min. Emulsions containing EPP had D[32] of 1.65 and 1.61 μm when they were entrapped in 10% MD and 8% MD-2% GA coating material solutions, respectively. It was possible to obtain nano-emulsions when purification step was performed. Emulsions prepared with PEPP and coated with 10% MD and 8% MD-2% GA had D[32] of 0.396 and 0.334 μm, respectively. Encapsulation efficiency of the capsules increased significantly from 86.07-88.45% to 98.01-98.29% by means of degritting (p≤0.001). Loss of total phenolic content during storage at 43% and 85% relative humidities was smaller for encapsulated powders when compared to powders not entrapped in coating material. In addition, encapsulation significantly increased retention of phenolic compounds from 15.1-22.2% to 30.4-30.7% during baking (p≤0.05).
Subject Keywords
Microencapsulation.
,
Polyphenols.
,
Drosophilidae.
,
Sour cherry.
,
Baking.
URI
http://etd.lib.metu.edu.tr/upload/12614412/index.pdf
https://hdl.handle.net/11511/21656
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effect of Degritting of Phenolic Extract from Sour Cherry Pomace on Encapsulation Efficiency-Production of Nano-suspension
LUCA, Alexandru; Cilek, Betul; Hasırcı, Vasıf Nejat; Şahin, Serpil; Şümnü, Servet Gülüm (2013-09-01)
The objective of this study was to study the influence of purification of sour cherry pomace extract on particle size distribution of suspension and on encapsulation efficiency of powders. In addition, antioxidant activity, surface morphology, and color of powder and capsules were determined. Extraction of phenolic compounds was performed at 30 A degrees C with shaking at 70 rpm for 24 h with 1:20 solid-solvent ratio. Ethanol-water (1:1) was used as the solvent. Filtered extract was concentrated in a rotary...
Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas
ARBAĞ, HÜSEYİN; YAŞYERLİ, SENA; YAŞYERLİ, NAİL; DOĞU, GÜLŞEN; Doğu, Timur (2016-12-05)
Mesoporous alumina with an ordered pore structure has significant advantages as a catalyst support in terms of minimization of diffusion limitations and coke formation during reforming reactions. Conversion of biogas to synthesis gas through dry reforming of methane, was investigated over Co & Ni impregnated mono- and bi-metallic mesoporous alumina catalysts with ordered pore structures. Comparison of the results obtained with mesoporous alumina catalysts containing 5% Ni and 2.5% Ni-2.5% Co proved that inc...
Microencapsulation of phenolic compounds extracted from sour cherry (Prunus cerasus L.) pomace
Çilek, Betül; Mert, Behiç; Department of Food Engineering (2012)
The main objective of the study was to encapsulate the phenolic compounds from sour cherry pulp in micro size, to investigate the physicochemical properties of capsules and their digestability in simulated gastric and intestinal fluid. The effect of different coating materials, ultrasonication time and core to coating ratio on encapsulation of phenolic compounds from sour cherry pomace was investigated. Maltodextrin and gum Arabic were chosen as coating materials. Coating material was prepared with differen...
Effects of oxidative functionalized and aminosilanized carbon nanotubes on the crystallization behaviour of polyamide-6 nanocomposites
Kaynak, Cevdet (2014-04-01)
The purpose of this study is to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (1) isothermal and (2) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (3) crystal structure of injection molded specimens by XRD analyses. Nanocomposites were compounded by using melt mixing technique via twin screw extrusion. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanot...
Effects of silica nanoparticles on the performance of water-based drilling fluids
Kök, Mustafa Verşan; Bal, Berk (2019-09-01)
In this research, two groups of experiments were conducted to investigate the effects of silica (SiO2) nanoparticles on the filtration and rheological properties of water-based drilling fluids. In the first group, bentonite, chrome-free lignosulfonate (CFL) and carboxymethyl cellulose (CMC) were used in different concentrations to obtain base fluids. Nanofluids were prepared by adding 0.5 g of four different silica nanoparticles into these drilling fluids. Comparison of rheological properties, fluid loss am...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Luca, “Effect of nanoencapsulation of purified polyphenolic powder on encapsulation efficiency, storage and baking stability,” M.S. - Master of Science, Middle East Technical University, 2012.