Sol-Gel processing of organically modified ITO thin films and characterization of their optoelectronic and microstructural properties

Download
2012
Kesim, Mehmet Tümerkan
Indium tin oxide (ITO) thin films were formed on glass substrates by sol-gel method. Coating sols were prepared using indium chloride tetrahydrate (InCl3•4H2O) and tin-chloride pentahydrate (SnCl4•5H2O) stabilized in organic solvents (acetylacetone and ethanol). First attempt was to synthesize ITO thin films using standard/unmodified coating sols. The effect of calcination treatment in air (300 – 600 °C) and number of coating layer(s) (1, 4, 7 or 10) on optoelectronic properties (electrical conductivity and optical transparency), crystal structure and microstructure of ITO thin films were investigated. In addition, single-layer ITO thin films with optoelectronic properties comparable to multi-layered films were prepared by employing organically modified coating sols. Oxalic acid dihydrate (OAD) –a drying/microstructure control agent– addition to standard sol formulation was achieved. The rationale was to improve the optoelectronic properties of ITO films through enhancement in microstructure and chemical characteristics upon OAD addition. The effects of OAD content in the sol formulation and post-coating calcination treatment on electrical/optical properties of ITO films have been reported. Finally, the effects of post coating drying temperature (100 – 200 °C) and time (10 – 60 min) on optoelectronic and microstructural properties of OAD-modified ITO thin films were discussed. Thin films have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD),x-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and four-point probe measurement techniques. It was shown that film formation efficiency, surface coverage and homogeneity were all enhanced with OAD addition. OAD modification also leads to a significant improvement in electrical conductivity without affecting the film thickness (45±3 nm). Highly transparent (98 % transmittance in visible region) ITO thin films with a sheet resistance as low as 3.8±0.4 kΩ/sqr have been obtained by employing coating sols with optimized OAD amount (0.75 M). The optimum post-coating drying temperature (100 °C) and drying time (10 min) was also determined for 0.75 M OAD-modified ITO thin films.

Suggestions

Sol-gel derived silver-incorporated titania thin films on glass: bactericidal and photocatalytic activity
Akgun, Betul Akkopru; Wren, Anthony W.; Durucan, Caner; Towler, Mark R.; Mellott, Nathan P. (Springer Science and Business Media LLC, 2011-08-01)
Titanium dioxide (TiO(2)) and silver-containing TiO(2) (Ag-TiO(2)) thin films were prepared on silica pre-coated float glass substrates by a sol-gel spin coating method. The bactericidal activity of the films was determined against Staphylococcus epidermidis under natural and ultraviolet (UV) illumination by four complementary methods; (1) the disk diffusion assay, (2) UV-induced bactericidal test, (3) qualitative Ag ion release in bacteria inoculated agar media and (4) surface topographical examination by ...
Energy transfer and 1.54 mu m emission in amorphous silicon nitride films
Yerci, Selçuk; Kucheyev, S. O.; VAN BUUREN, TONY; Basu, S. N.; Dal Negro, L. (2009-07-20)
Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiNx) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiNx. A systematic optimization of the 1.54 mu m emission was pe...
Structural and optoelectronic properties of vanadium pentoxide thin films deposited by ultrasonic spray pyrolysis.
Koç, Şeyma; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2019)
Nanocrystalline vanadium pentoxide (V2O5) thin films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates using ultrasonic spray pyrolysis and spin coating methods. The formation behavior of thin films, the effects of different production methods on the characteristics of the films and their microstructural / physical properties were investigated as a function of annealing temperature in the range of 450-550 °C and other controllable process parameters. Structural, morphological and op...
Mechanism and characterization studies on boron carbides deposited by chemical vapor deposition technique
Karaman, Mustafa; Özbelge, Hilmi Önder; Sezgi, Naime Aslı; Doğu, Timur (2005-12-02)
Boron carbide was produced in an impinging jet CVD reactor from a gas mixture of BCl3, CH4 and H-2. The mass transfer limitations on the reaction kinetics were minimised by the jet impingement on the substrate surface. XPS characterization of the produced deposits revealed a nearly pure boron carbide phase containing small amounts of oxy-boron and oxy-carbon species. After a detailed kinetic study, a reaction model was proposed to predict the rates of boron carbide and dichloroborane formation reactions. In...
Indium tin oxide thin films elaborated by sol-gel routes: The effect of oxalic acid addition on optoelectronic properties
Kesim, Mehmet Tumerkan; Durucan, Caner (Elsevier BV, 2013-10-31)
Single layer indium tin oxide (ITO) thin films were deposited on glass using modified sol-gel formulations. The coating sols were prepared using indium (InCl3 center dot 4H(2)O) and tin salts (SnCl4 center dot 5H(2)O). The stable sols were obtained using ethanol (C2H5OH) and acetylacetone (C5H8O2) as solvents and by the addition of oxalic acid dihydrate (C2H2O4 center dot 2H(2)O) in different amounts. The effect of oxalic acid content in the sol formulation and post-coating calcination treatment (in air at ...
Citation Formats
M. T. Kesim, “Sol-Gel processing of organically modified ITO thin films and characterization of their optoelectronic and microstructural properties,” M.S. - Master of Science, Middle East Technical University, 2012.