Lithologic discrimination and mapping by aster thermal infrared imagery

Okyay, Ünal
In conventional remote sensing, visible-near infrared (VNIR) and shortwave infrared (SWIR) part of the electromagnetic spectrum (EMS) have been utilized for lithological discrimination extensively. Additionally, TIR part of the EM spectrum can also be utilized for discrimination of surface materials either through emissivity characteristics of materials or through radiance as in VNIR and SWIR. In this study, ASTER thermal multispectral infrared data is evaluated in regard to lithological discrimination and mapping through emissivity values rather than conventional methods that utilize radiance values. In order to reach this goal, Principle Component Analysis (PCA) and Decorrelation Stretch techniques are utilized for ASTER VNIR and SWIR data. Furthermore, the spectral indices which directly utilize the radiance values in VNIR, SWIR and TIR are also included in the image analysis. The emissivity values are obtained through Temperature-Emissivity Separation (TES) algorithm. The results of the image analyses, except spectral indices, are displayed in RGB color composite along with the geological map for visual interpretation. The results showed that utilizing emissivity values possesses potential for discrimination of organic matter bearing surface mixtures which has not been possible through the conventional methods. Additionally, PCA of emissivity values may increase the level of discrimination even further. Since the emissivity utilization is rather unused throughout in literature and new, further assessment of accuracy is highly recommended along with the field validations.


Metamaterial based wideband infrared absorbers
Üstün, Kadir; Sayan, Gönül; Department of Electrical and Electronics Engineering (2017)
In this thesis, design and simulation of wideband metamaterial absorbers are investigated in the long wave infrared (LWIR) and the mid-wave infrared (MWIR) bands of the electromagnetic spectrum. Use of LWIR and MWIR bands in absorber design is especially important for critical applications including the design of thermal cameras and thermal emitters. Integration of metamaterial topologies into the absorber structures provides flexibilities in design to enhance the operation efficiency of these devices by in...
Imaging infrared seeker design
Ünal, Ahmet; Çakır, Serhat; Department of Physics (2014)
The subject of this study is the design of an imaging infrared seeker for aerial targets. Firstly the radiant power of the target was discussed and optical design of seeker lenses were done with ZEMAX Optical Design Software considering the MTF (Modulation Transfer Function) values, optical path ifferences, distortions and detection range calculations. After that, detection range calculations and simulation results of the optical system were presented. Before lock on range calculations, spectral band of the...
High performance focal plane array technologies from short to long wavelength infrared bands
Arslan, Yetkin; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2014)
This thesis work covers the development of three different state of the art infrared sensor technologies: quantum well infrared photodetectors (QWIPs), HgCdTe sensors and extended InGaAs photodetectors. QWIP is the leading member of the quantum structure infrared photodetector family providing excellent uniformity and stability with field proven performance. The utilization of the InP/In0.48Ga0.52As multi-quantum well structure (instead of the standard AlGaAs/GaAs material system) for the implementation of ...
Forward-looking long-wave infrared image based prescreener for landmine detection
Doğan, Aylin; Akar, Gözde; Department of Electrical and Electronics Engineering (2017)
Infrared imagery is widely used in many applications in both civilian and military areas. In landmine detection, the goal is to detect the anomalies between mine surface and soil from variation of reflected/emitted thermal radiation. In this thesis, various types of anomaly detection techniques of IR are investigated and the feasibility of these techniques for use in landmine detection is analysed. Additionally, effects of parameters for algorithms are compared and the parameters are optimized for increasin...
Moving hot object detection in airborne thermal videos
Kaba, Utku; Akar, Gözde; Department of Electrical and Electronics Engineering (2012)
In this thesis, we present an algorithm for vision based detection of moving objects observed by IR sensors on a moving platform. In addition we analyze the performance of different approaches in each step of the algorithm. The proposed algorithm is composed of preprocessing, feature detection, feature matching, homography estimation and difference image analysis steps. First, a global motion estimation based on planar homography model is performed in order to compensate the motion of the sensor and moving ...
Citation Formats
Ü. Okyay, “Lithologic discrimination and mapping by aster thermal infrared imagery,” M.S. - Master of Science, Middle East Technical University, 2012.