Machine learning methods for opponent modeling in games of imperfect information

Download
2012
Şirin, Volkan
This thesis presents a machine learning approach to the problem of opponent modeling in games of imperfect information. The efficiency of various artificial intelligence techniques are investigated in this domain. A sequential game is called imperfect information game if players do not have all the information about the current state of the game. A very popular example is the Texas Holdem Poker, which is used for realization of the suggested methods in this thesis. Opponent modeling is the system that enables a player to predict the behaviour of its opponent. In this study, opponent modeling problem is approached as a classification problem. An architecture with different classifiers for each phase of the game is suggested. Neural Networks, K-Nearest Neighbors (KNN) and Support Vector Machines are used as classifier. For modeling a particular player, KNN is found to be most successful amongst all, with a prediction accuracy of 88%. An ensemble learning system is proposed for modeling different playing styles and unknown ones. Computational complexity and parallelization of some calculations are also provided.

Suggestions

Generation of cyclic/toroidal chaos by Hopfield neural networks
Akhmet, Marat (Elsevier BV, 2014-12-05)
We discuss the appearance of cyclic and toroidal chaos in Hopfield neural networks. The theoretical results may strongly relate to investigations of brain activities performed by neurobiologists. As new phenomena, extension of chaos by entrainment of several limit cycles as well as the attraction of cyclic chaos by an equilibrium are discussed. Appropriate simulations that support the theoretical results are depicted. Stabilization of tori in a chaotic attractor is realized not only for neural networks, but...
Simple and complex behavior learning using behavior hidden Markov Model and CobART
Seyhan, Seyit Sabri; Alpaslan, Ferda Nur; Department of Computer Engineering (2013)
In this thesis, behavior learning and generation models are proposed for simple and complex behaviors of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models have common phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are categorized using correlation based...
Improving reinforcement learning by using sequence trees
Girgin, Sertan; Polat, Faruk; Alhajj, Reda (Springer Science and Business Media LLC, 2010-12-01)
This paper proposes a novel approach to discover options in the form of stochastic conditionally terminating sequences; it shows how such sequences can be integrated into the reinforcement learning framework to improve the learning performance. The method utilizes stored histories of possible optimal policies and constructs a specialized tree structure during the learning process. The constructed tree facilitates the process of identifying frequently used action sequences together with states that are visit...
Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic
Grobelny, Jerzy; Michalski, Rafal; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
In this work, we propose a new method for modeling human reasoning about objects' similarities. We assume that similarity depends on perceived intensities of objects' attributes expressed by natural language expressions such as low, medium, and high. We show how to find the underlying structure of the matrix with intensities of objects' similarities in the factor-analysis-like manner. The demonstrated approach is based on fuzzy logic and set theory principles, and it uses only maximum and minimum operators....
Video shot boundary detection by graph theoretic approaches
Aşan, Emrah; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2008)
This thesis aims comparative analysis of the state of the art shot boundary detection algorithms. The major methods that have been used for shot boundary detection such as pixel intensity based, histogram-based, edge-based, and motion vectors based, are implemented and analyzed. A recent method which utilizes “graph partition model” together with the support vector machine classifier as a shot boundary detection algorithm is also implemented and analyzed. Moreover, a novel graph theoretic concept, “dominant...