Generation of cyclic/toroidal chaos by Hopfield neural networks

We discuss the appearance of cyclic and toroidal chaos in Hopfield neural networks. The theoretical results may strongly relate to investigations of brain activities performed by neurobiologists. As new phenomena, extension of chaos by entrainment of several limit cycles as well as the attraction of cyclic chaos by an equilibrium are discussed. Appropriate simulations that support the theoretical results are depicted. Stabilization of tori in a chaotic attractor is realized not only for neural networks, but also for differential equations theory, and this phenomenon has never been reported before in the literature. It is demonstrated that the proposed chaos generation technique cannot be considered as generalized synchronization.


Attraction of Li-Yorke chaos by retarded SICNNs
Akhmet, Marat (Elsevier BV, 2015-01-05)
In the present study, dynamics of retarded shunting inhibitory cellular neural networks (SICNNs) is investigated with Li-Yorke chaotic external inputs and outputs. Within the scope of our results, we prove the presence of generalized synchronization in coupled retarded SICNNs, and confirm it by means of the auxiliary system approach. We have obtained more than just synchronization, as it is proved that the Li-yorke chaos is extended with its ingredients, proximality and frequent separation, which have not b...
Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
Buyuksahin, Umit Cavus; Ertekin Bolelli, Şeyda (Elsevier BV, 2019-10-07)
Many applications in different domains produce large amount of time series data. Making accurate forecasting is critical for many decision makers. Various time series forecasting methods exist that use linear and nonlinear models separately or combination of both. Studies show that combining of linear and nonlinear models can be effective to improve forecasting performance. However, some assumptions that those existing methods make, might restrict their performance in certain situations. We provide a new Au...
Robust semi-supervised clustering with polyhedral and circular uncertainty
DİNLER, DERYA; Tural, Mustafa Kemal (Elsevier BV, 2017-11-22)
We consider a semi-supervised clustering problem where the locations of the data objects are subject to uncertainty. Each uncertainty set is assumed to be either a closed convex bounded polyhedron or a closed disk. The final clustering is expected to be in accordance with a given number of instance level constraints. The objective function considered minimizes the total of the sum of the violation costs of the unsatisfied instance level constraints and a weighted sum of squared maximum Euclidean distances b...
Analyzing the Simonshaven Case Using Bayesian Networks.
Fenton, N; Neil, M; Yet, Barbaros; Lagnado, D (Wiley, 2019-03-12)
This paper is one in a series of analyses of the Dutch Simonshaven murder case, each using a different modeling approach. We adopted a Bayesian network (BN)–based approach which requires us to determine the relevant hypotheses and evidence in the case and their relationships (captured as a directed acyclic graph) along with explicit prior conditional probabilities. This means that both the graph structure and probabilities had to be defined using subjective judgments about the causal, and other, connections...
Nuclear Fission-Nuclear Fusion algorithm for global optimization: a modified Big Bang-Big Crunch algorithm
YALÇIN, YAĞIZER; Pekcan, Onur (Springer Science and Business Media LLC, 2020-04-01)
This study introduces a derivative of the well-known optimization algorithm, Big Bang-Big Crunch (BB-BC), named Nuclear Fission-Nuclear Fusion-based BB-BC, simply referred to as N2F. Broadly preferred in the engineering optimization community, BB-BC provides accurate solutions with reasonably fast convergence rates for many engineering problems. Regardless, the algorithm often suffers from stagnation issues. More specifically, for some problems, BB-BC either converges prematurely or exploits the promising r...
Citation Formats
M. Akhmet, “Generation of cyclic/toroidal chaos by Hopfield neural networks,” NEUROCOMPUTING, pp. 230–239, 2014, Accessed: 00, 2020. [Online]. Available: