Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Identification of kinematic parameters using pose measurements and building a flexible interface
Download
index.pdf
Date
2012
Author
Bayram, Alican
Metadata
Show full item record
Item Usage Stats
162
views
101
downloads
Cite This
Robot manipulators are considered as the key element in flexible manufacturing systems. Nonetheless, for a successful accomplishment of robot integration, the robots need to be accurate. The leading source of inaccuracy is the mismatch between the prediction made by the robot controller and the actual system. This work presents techniques for identification of actual kinematic parameters and pose accuracy compensation using a laser-based 3-D measurement system. In identification stage, both direct search and gradient methods are utilized. A computer simulation of the identification is performed using virtual position measurements. Moreover, experimentation is performed on industrial robot FANUC Robot R-2000iB/210F to test full pose and relative position accuracy improvements. In addition, accuracy obtained by classical parametric methodology is improved by the implementation of artificial neural networks. Neuro-parametric method proves an enhanced improvement in simulation results. The whole proposed theory is reflected by developed simulation software throughout this work while achieving accuracy nine times better when comparing before and after implementation.
Subject Keywords
Robots, Industrial.
,
Neural networks (Computer science).
,
Robots
URI
http://etd.lib.metu.edu.tr/upload/12614819/index.pdf
https://hdl.handle.net/11511/21795
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Software development for man-machine interface for an industrial robot
Cengiz, Mahir Cihan; Kaftanoğlu, Bilgin; Department of Mechanical Engineering (2003)
In this study, a robotic software, which controls the robot, is developed. The robot considered is a six degree of freedom robot and it is designed and manufactured in METU. User can send the robot anywhere in space within its workspace, in any orientation. Forward and inverse kinamatics can be executed according to the needs. Simulation framework is embedded into the software for the 3D visualisation of the robot. Any movements can be simulated on the screen. Software also generates the path for the given ...
A behavior based robot control system architecture for navigation environments with randomly allocated walls
Altuntaş, Berrin; Alpaslan, Ferda Nur; Department of Computer Engineering (2003)
Integration of knowledge to the control system of a robot is the best way to emerge intelligence to robot. The most useful knowledge for a robot control system that aims to visit the landmarks in an environment is the enviromental knowledge. The most natural representation of the robot2s environment is a map. This study presents a behavior based robot control system architecture that is based on subsumption and motor schema architectures and enables the robot to construct the map of the environment by using...
Optimal control of a half circular compliant legged monopod
Özkan Aydın, Yasemin; Leblebicioğlu, Mehmet Kemal; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2013)
Legged robots have complex architecture because of their nonlinear dynamics and unpredictable ground contact characteristics. They can be also dynamically stable and exhibit dynamically dexterous behaviors like running, jumping, flipping which require complex plant models that may sometimes be difficult to build. In this thesis, we focused on half circular compliant legged monopod that can be considered as a reduced-order dynamical model for the hexapod robot, called RHex. The main objective of this thesis ...
Identification of materials with magnetic characteristics by neural networks
Nazlibilek, Sedat; EGE, Yavuz; Kalender, Osman; Sensoy, Mehmet Gokhan; Karacor, Deniz; Sazh, Murat Husnu (2012-05-01)
In industry, there is a need for remote sensing and autonomous method for the identification of the ferromagnetic materials used. The system is desired to have the characteristics of improved accuracy and low power consumption. It must also autonomous and fast enough for the decision. In this work, the details of inaccurate and low power remote sensing mechanism and autonomous identification system are given. The remote sensing mechanism utilizes KMZ51 anisotropic magneto-resistive sensor with high sensitiv...
Control of a planar cable-actuated parallel manipulator with realistic cables
Düzgören, Onur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2018)
The cable-actuated parallel manipulators comprise a new class of robotic systems which utilize length-controlled unilateral force elements like cables or wires to move and orient an object. They provide several benefits over conventional parallel robots, such as larger workspace, simpler structure, and higher payload/manipulator weight ratio. However, the cables can only be pulled but not pushed. Besides, they may sag due to their own weight. Therefore, the cable-actuated manipulators pose challenges in mod...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bayram, “Identification of kinematic parameters using pose measurements and building a flexible interface,” M.S. - Master of Science, Middle East Technical University, 2012.