Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Split canard design for enhancing the maneuverability of a missile at high angles of attack
Download
index.pdf
Date
2012
Author
Çetiner, Abdullah Emre
Metadata
Show full item record
Item Usage Stats
8
views
8
downloads
In this thesis, the effects of split canard on the aerodynamic characteristics of missiles at high angles of attack are numerically investigated. Moreover, an enhanced semi-empirical engineering-level method is developed for prediction of normal force and pitching moment of split canard mounted missiles. In order to analyze the effects of split canard, a generic test case model is created by mounting a split canard to a generic test case model, NASA Dual Control Missile (NDCM), which was previously modeled and analyzed for the validation of CFD modeling. After obtaining a generic missile model with split canard, the effects of split canard on the aerodynamic characteristics of this missile in case of no control, pitch control, yaw control, and roll control deflections are numerically investigated. It is seen that the split canard decreases the local angle of attack of existing canard, increases the normal force and the maneuverability of the missile, and reduces the induced rolling moment at high angles of attack. Five different aerodynamic design parameters are determined for split canard and the effects of each parameter on missile aerodynamics are numerically investigated. It is seen that the roll orientation, deflection angle, size of the split canards have strong effects on missile’s aerodynamic performance whereas longitudinal position of the split canards only affects the pitching moment of the missile. Finally, an enhanced semi-empirical engineering-level method, CFD-CBU, is developed for split canard mounted missiles in order to predict the normal force and the pitching moment coefficients. The developed method is validated with NDCM test case model. After this validation, the method is applied to the split canard mounted generic missile in case of no control deflection and pitch control deflection. The results of this method are compared with CFD results and it is seen that the results are in good agreement with each other.
Subject Keywords
Rockets (Aeronautics)
,
Guided missiles.
,
Computational fluid dynamics.
,
Fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12614920/index.pdf
https://hdl.handle.net/11511/21808
Collections
Graduate School of Natural and Applied Sciences, Thesis