Missile autopilot design by projective control theory

Doruk, Reşat Özgür
In this thesis, autopilots are developed for missiles with moderate dynamics and stationary targets. The aim is to use the designs in real applications. Since the real missile model is nonlinear, a linearization process is required to get use of systematic linear controller design techniques. In the scope of this thesis, the linear quadratic full state feedback approach is applied for developing missile autopilots. However, the limitations of measurement systems on the missiles restrict the availability of all the states required for feedback. Because of this fact, the linear quadratic design will be approximated by the use of projective control theory. This method enables the designer to use preferably static feedback or if necessary a controller plus a low order compensator combination to approximate the full state feedback reference. Autopilots are checked for the validity of linearization, robust stability against aerodynamic, mechanical and measurement uncertainties.


Fuzzy logic guidance system design for guided missiles
Vural, A. Özgür; Özgören, Mustafa Kemal; Merttopçuoğlu, Osman; Department of Mechanical Engineering (2003)
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations ...
Missile guidance with impact angle constraint
Çilek, Barkan; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
Missile flight control systems are the brains of missiles. One key element of a missile FCS is the guidance module. It basically generates the necessary command inputs to the autopilot.Guidance algorithm selection depends on the purpose of the corresponding missile type. In this thesis, missile guidance design problem with impact angle constraint is studied which is the main concern of anti-tank and anti-ship missiles. Different algorithms existing in the literature have been investigated using various anal...
Adaptive control of guided missiles
Tiryaki Kutluay, Kadriye; Yavrucuk, İlkay; Department of Aerospace Engineering (2011)
This thesis presents applications and an analysis of various adaptive control augmentation schemes to various baseline flight control systems of an air to ground guided missile. The missile model used in this research has aerodynamic control surfaces on its tail section. The missile is desired to make skid to turn maneuvers by following acceleration commands in the pitch and yaw axis, and by keeping zero roll attitude. First, a linear quadratic regulator baseline autopilot is designed for the control of the...
Aerodynamic parameter estimation of a missile
Aksu, Arda; Kutay, Ali Türker; Department of Aerospace Engineering (2013)
Aerodynamic characteristics of missiles depend strongly on wind angles, that is, angle of attack and sideslip angle. However it is impractical to measure these angles during missile testing. Therefore, without direct information of the wind angles, it becomes a difficult problem to be able to accurately estimate the missile aerodynamic parameters from flight tests. This thesis addresses this problem and suggests an approach to estimate missile aerodynamic parameters successfully without wind angles measurem...
Aerodynamic optimization of missile external configurations
Arslan, Kıvanç; Özgen, Serkan; Department of Aerospace Engineering (2014)
In this thesis, design optimization methods capable of optimizing aerodynamic performances of missiles and rockets are developed. Sequential Quadratic Programming (SQP) and Random Search (RS) methods are used for optimization, whereas Missile DATCOM, which is a semi-empirical aerodynamic analysis tool, is used to calculate aerodynamic coefficients of missile configurations. As the first part of the work, capabilities and limitations of SQP and RS optimization methods are investigated on a complex test funct...
Citation Formats
R. Ö. Doruk, “Missile autopilot design by projective control theory,” M.S. - Master of Science, Middle East Technical University, 2003.