Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Missile autopilot design by projective control theory
Download
143425.pdf
Date
2003
Author
Doruk, Reşat Özgür
Metadata
Show full item record
Item Usage Stats
341
views
0
downloads
Cite This
In this thesis, autopilots are developed for missiles with moderate dynamics and stationary targets. The aim is to use the designs in real applications. Since the real missile model is nonlinear, a linearization process is required to get use of systematic linear controller design techniques. In the scope of this thesis, the linear quadratic full state feedback approach is applied for developing missile autopilots. However, the limitations of measurement systems on the missiles restrict the availability of all the states required for feedback. Because of this fact, the linear quadratic design will be approximated by the use of projective control theory. This method enables the designer to use preferably static feedback or if necessary a controller plus a low order compensator combination to approximate the full state feedback reference. Autopilots are checked for the validity of linearization, robust stability against aerodynamic, mechanical and measurement uncertainties.
Subject Keywords
Guided missiles
URI
http://etd.lib.metu.edu.tr/upload/12610124/index.pdf
https://hdl.handle.net/11511/13834
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Fuzzy logic guidance system design for guided missiles
Vural, A. Özgür; Özgören, Mustafa Kemal; Merttopçuoğlu, Osman; Department of Mechanical Engineering (2003)
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations ...
Missile guidance with impact angle constraint
Çilek, Barkan; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
Missile flight control systems are the brains of missiles. One key element of a missile FCS is the guidance module. It basically generates the necessary command inputs to the autopilot.Guidance algorithm selection depends on the purpose of the corresponding missile type. In this thesis, missile guidance design problem with impact angle constraint is studied which is the main concern of anti-tank and anti-ship missiles. Different algorithms existing in the literature have been investigated using various anal...
Adaptive control of guided missiles
Tiryaki Kutluay, Kadriye; Yavrucuk, İlkay; Department of Aerospace Engineering (2011)
This thesis presents applications and an analysis of various adaptive control augmentation schemes to various baseline flight control systems of an air to ground guided missile. The missile model used in this research has aerodynamic control surfaces on its tail section. The missile is desired to make skid to turn maneuvers by following acceleration commands in the pitch and yaw axis, and by keeping zero roll attitude. First, a linear quadratic regulator baseline autopilot is designed for the control of the...
Aerodynamic parameter estimation of a missile
Aksu, Arda; Kutay, Ali Türker; Department of Aerospace Engineering (2013)
Aerodynamic characteristics of missiles depend strongly on wind angles, that is, angle of attack and sideslip angle. However it is impractical to measure these angles during missile testing. Therefore, without direct information of the wind angles, it becomes a difficult problem to be able to accurately estimate the missile aerodynamic parameters from flight tests. This thesis addresses this problem and suggests an approach to estimate missile aerodynamic parameters successfully without wind angles measurem...
Adaptive roll control of guided munitions
Öveç, Naz Tuğçe; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
This thesis presents an adaptive roll control scheme for guided munitions. Guided munitions are air-to-air or air-to-surface weapons which have enhanced target hit capabilities with laser seekers or similar guidance utilities. The dynamic interferences in nonlinear regions of the flight envelope, leads the studies on control of guided munitions to search for adaptive solutions. The missile used in this study has no propulsive forces and do the adequate maneuvers commanded by the guidance algorithm with its ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Ö. Doruk, “Missile autopilot design by projective control theory,” M.S. - Master of Science, Middle East Technical University, 2003.