Structural monitoring and analysis of steel truss railroad bridges

Akın, Tuğba
Railroad bridges are the most important connection parts of railroad networks. These bridges are exposed to heavier train loads compared to highway bridges as well as various detrimental ambient conditions during their life span. The railroad bridges in Turkey are mostly constructed during the late Ottoman and first periods of the Turkish Republic; therefore, they are generally close to about 100 years of age; their inspection and maintenance works are essential. Structural health monitoring (SHM) techniques are widely used around the world in order to increase the effectiveness of the inspection and maintenance works and also evaluate structural reliability. Application of SHM methods on railway bridges by static and dynamic measurements over short and long durations give important structural information about bridge members’ load level and overall bridge structure in terms of vibration frequencies, deflections, etc. Structural Reliability analysis provides further information about the safety of a structural system and becomes even more efficient when combined with the SHM studies. In this study, computer modeling and SHM techniques are used for identifying structural condition of a steel truss railroad bridge in Uşak, Turkey, which is composed of six spans with 30 m length each. The first two spans of the bridge were rebuilt about 50 years ago, which had construction plans and are selected as pilot case for SHM and evaluation studies in this thesis. Natural frequencies are obtained by using 4 accelerometers and a dynamic data acquisition system (DAS). Furthermore, mid span vertical deflection member strains and bridge accelerations are obtained using a DAS permanently left on site and then compared with the computer model analyses results. SHM system is programmed for triggering by the rail load sensors developed at METU and an LVDT to collect mid span deflection high speed data from all sensors during train passage. The DAS is also programmed to collect slow speed data (once at every 15 minutes) for determination of average ambient conditions such as temperature and humidity and all bridge sensors during long term monitoring. Structural capacity and reliability indices for stress levels of bridge members are determined for the measured and simulated train loads to determine structural condition of bridge members and connections. Earthquake analyses and design checks for bridge members are also conducted within the scope of this study.