Covariant symplectic structure and conserved charges of new massive gravity

Download
2012
Alkaç, Gökhan
We show that the symplectic current obtained from the boundary term, which arises in the first variation of a local diffeomorphism invariant action, is covariantly conserved for any gravity theory described by that action.Therefore, a Poincaré invariant two-form can be constructed on the phase space, which is shown to be closed without reference to a specific theory.Finally, we show that one can obtain a charge expression for gravity theories in various dimensions, which plays the role of the Abbott-Deser-Tekin charge for spacetimes with nonconstant curvature backgrounds, by using the diffeomorphism invariance of the symplectic two-form. As an example, we calculate the conserved charges of some solutions of new massive gravity and compare the results with previous works.

Suggestions

Particle content of quadratic and f (R-mu nu sigma rho) theories in (A)dS
Tekin, Bayram (2016-05-17)
We perform a complete decoupling of the degrees of freedom of quadratic gravity and the generic f(R-mu nu sigma rho) theory about any one of their possible vacua, i.e. maximally symmetric solutions, and find the masses of the spin-2 and spin-0 modes in explicit forms.
Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds
Şirikçi, Nil İpek (Springer Science and Business Media LLC, 2020-10-01)
We present an alternative proof of a nonexistence result for displaceable constant sectional curvature Lagrangian submanifolds under certain assumptions on the Lagrangian submanifold and on the ambient symplectically aspherical symplectic manifold. The proof utilizes an index relation relating the Maslov index, the Morse index and the Conley-Zehnder index for a periodic orbit of the flow of a specific Hamiltonian function, a result on this orbit's Conley-Zehnder index and another result on the Morse indices...
Covariant symplectic structure and conserved charges of new massive gravity
Alkaç, Gökhan; Devecioglu, Deniz Olgu (2012-03-30)
We show that the symplectic current obtained from the boundary term, which arises in the first variation of a local diffeomorphism invariant action, is covariantly conserved for any gravity theory described by that action. Therefore, a Poincare invariant two-form can be constructed on the phase space, which is shown to be closed without reference to a specific theory. Finally, we show that one can obtain a charge expression for gravity theories in various dimensions, which plays the role of the Abbott-Deser...
Higher dimensional metrics of colliding gravitational plane waves
Gurses, M; Kahya, EO; Karasu, Atalay (2002-07-15)
We give a higher even dimensional extension of vacuum colliding gravitational plane waves with the combinations of collinear and noncollinear polarized four-dimensional metrics. The singularity structure of space-time depends on the parameters of the solution.
Hyperbolic conservation laws on manifolds with limited regularity
Lefloch, Philippe G.; Okutmuştur, Baver (Elsevier BV, 2008-05-01)
We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of Lorentzian manifolds. Only limited regularity is assumed on the geometry of the manifold. For this problem, we establish the existence and uniqueness of an L-1 semi-group of weak solutions satisfying suitable entropy and boundary conditions.
Citation Formats
G. Alkaç, “Covariant symplectic structure and conserved charges of new massive gravity,” M.S. - Master of Science, Middle East Technical University, 2012.