Lorentz group in polarization optics

Download
2012
Oktay, Onur
The group theory allows one to study different branches of physics using the same set of commutation relations. It is shown that a formulation of the polarization optics that depends on the representations of the Lorentz group is possible. The set of four Stokes parameters, which is a standard tool of polarization optics, can be used to form a four-vector that is physically unrelated but mathematically equivalent to the space-time four-vector of the special relativity. By using the Stokes parameters, it is also possible to generate four-by-four matrix representations of the ordinary optical filters that are traditionally represented with the two-by-two Jones matrices. These four-by-four matrices are treated as the entities of the Lorentz group. They are like the Lorentz transformations applicable to the four-dimensional polarization space. Besides, optical decoherence process can be formulated within the framework of the SO(3,2) de Sitter group. The connection between the classical and quantum mechanical descriptions of the polarization of light allows the extension of the Stokes parameters to the quantum domain. In this respect, the properties of the polarization of the two-photon system can also be studied within the framework of the Lorentz group.
Citation Formats
O. Oktay, “Lorentz group in polarization optics,” M.S. - Master of Science, Middle East Technical University, 2012.