Production of boron nitride nanotubes from the reaction of NH₃ with boron and iron powder mixture

Download
2012
Noyan, Selin
Boron nitride nanotubes (BNNTs), which are structurally similar to carbon nanotubes (CNTs), were synthesized in 1995 for the first time. They are made up by folding atom sheets which consist of boron and nitrogen atoms into cylindrical form. After their discovery, BNNTs have been attracting great attention due to their extraordinary mechanical, thermal, electrical, and optical properties. In this study, BNNTs were synthesized from the reaction of ammonia gas with the boron and iron powder mixture in a tubular reactor which was connected to a mass spectrometer for on-line chemical analysis of the reactor effluent stream. The synthesized materials were purified with acid treatment. Chemical analysis results showed that nitrogen and hydrogen gases were present in addition to ammonia gas. XRD results revealed that the solid phases in the synthesized material were hexagonal boron nitride, rhombohedral boron nitride, iron, and boron-iron compounds (FeB49 and Fe3B). Reactions taking place in BNNT synthesis were proposed as the decomposition of ammonia gas which was the only gas phase reaction, the formation of boron-iron compounds from the reaction of boron with iron, and boron nitride formation from the reaction of nitrogen with boron-iron compounds. Agglomerated, hollow, multi-walled nanotubes were synthesized with an outer diameter range of 10-550 nm. Both open and close-ended nanotubes were observed. The interlayer distance between BN sheets was measured about 0.33 nm and this distance indicated the d002 plane of hexagonal boron nitride. BNNTs exhibited Type II isotherms with a Type B hysteresis. A decrease in the surface area of the synthesized BNNTs was observed with an increase in temperature. The highest surface area was 147.6 m2/g. Average pore diameter of BNNTs synthesized at different temperatures was around 38 Å. Deposition rate of boron nitride increased with an increase in temperature. After a certain temperature, deposition rate decreased with temperature due to the sintering effect. The highest deposition rate was observed when BNNTs were synthesized with the B/Fe weight ratio of 15/1 at 1300 °C.

Suggestions

Catalytic reaction of propylene to propylene oxide on various catalysts
Kalyoncu, Şule; Önal, Işık; Şeker, Erol; Department of Chemical Engineering (2012)
Throughout this thesis work, various catalysts were investigated with combinational approach to develop highly active and selective novel catalysts for direct epoxidation of propylene to PO using molecular oxygen. The promoted and un-promoted silver (Ag), copper (Cu), ruthenium (Ru), manganese (Mn) mono and multimetallic catalytic systems over different silica supports were prepared via sol-gel method and incipient wetness method. In addition to support effect, the effects of different promoters on the cata...
Production of boron nitride nanotubes and their uses in polymer composites
Demir, Can; Sezgi, Naime Aslı; Bayram, Göknur; Department of Chemical Engineering (2010)
Boron nitride nanotubes (BNNTs), firstly synthesized in 1995, are structural analogues of carbon nanotubes (CNTs) with alternating boron and nitrogen atoms instead of carbon atoms. Besides their structure, mechanical and thermal properties of BNNTs are very similar to the remarkable properties of CNTs. However, BNNTs have higher resistance to oxidation than CNTs. Also, BNNTs are electrically isolating. Therefore, they are envisioned as suitable fillers for the fabrication of mechanically and thermally enhan...
Development of Inorganic Silicone Polymers from Silica Fume
Erdoğan, Sinan Turhan; Tokyay, Mustafa (2012-10-05)
Geopolymers, inorganic materials with polymer-like repeating units containing silicon, aluminum, and oxygen, in 1-, 2-, or 3-dimensions, have been gaining popularity. While most research has focused on rigid, higher- strength geopolymers with mechanical properties similar to those of Portland cement concrete, there also exists a silicon-rich class of geopolymers which is more polymer-like, with lower strength and stiffness, and greater strain capacity but still having thermal resistance much superior to tra...
Synthesis and separation properties of B-ZSM-5 zeolite membranes on monolith supports
Kalıpçılar, Halil; Noble, RD; Falconer, JL (2002-12-01)
Alumina-coated, silicon carbide monoliths were used as supports for B-ZSM-5 zeolite membranes, which were synthesized by in situ hydrothermal crystallization. Both 2 turn x 2 mm (66 channels) and 4 mm x 4 mm (22 channels) monoliths with effective membrane area/volume ratios of 10.6 and 7.2 cm(2)/cm(3), respectively, were used. The membranes separated C-4 and C-6 hydrocarbon isomer vapor mixtures with high selectivities. The selectivities and permeances were comparable to tubular ZSM-5 membranes for butane i...
Synthesis and Characterization of Zirconium based Bulk Amorphous Alloys
Saltoğlu, İlkay; Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (2005-09-28)
In recent years, bulk amorphous alloys and nanocrystalline materials have been synthesized in a number of ferrous and non-ferrous based alloys systems, which have gained some applications due to their unique physico-chemical and mechanical properties. In the last decade, Zr-based alloys with a wide supercooled liquid region and excellent glass forming ability have been discovered. These systems have promising application fields due to their mechanical properties; high tensile strength, high fracture toughne...
Citation Formats
S. Noyan, “Production of boron nitride nanotubes from the reaction of NH₃ with boron and iron powder mixture,” M.S. - Master of Science, Middle East Technical University, 2012.