Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of Inorganic Silicone Polymers from Silica Fume
Date
2012-10-05
Author
Erdoğan, Sinan Turhan
Tokyay, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
Geopolymers, inorganic materials with polymer-like repeating units containing silicon, aluminum, and oxygen, in 1-, 2-, or 3-dimensions, have been gaining popularity. While most research has focused on rigid, higher- strength geopolymers with mechanical properties similar to those of Portland cement concrete, there also exists a silicon-rich class of geopolymers which is more polymer-like, with lower strength and stiffness, and greater strain capacity but still having thermal resistance much superior to traditional carbon polymers. Several industrial wastes are rich in silicon. Depending on various properties of the waste such as such as crystallinity, the actual compounds in which the silicon exists, and the presence of minor compounds, they can be "activated" thermochemically, using alkaline solutions and low-temperature oven curing to obtain inorganic polymers. Silica fume is one example. In this work, a few selected mixtures are presented to discuss the influence of varying the alkalinity the chemical activator (sodium hydroxide) and varying the thermal curing parameters (temperature and duration) on the properties of the polymer obtained. Polymers, softer and harder, porous and non-porous, with contrasting properties which can be useful for different construction applications are developed. Some mechanical and physical properties of these polymers, and their resistance to moisture is discussed.
Subject Keywords
Silicon
,
Inorganic polymers
,
Alkali activation
,
Viscoplasticity
,
Thermal curing
URI
https://hdl.handle.net/11511/52609
Conference Name
7th Asian Symposium on Polymers in Concrete (ASPIC 2012)
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Production of boron nitride nanotubes from the reaction of NH₃ with boron and iron powder mixture
Noyan, Selin; Sezgi, Naime Aslı; Department of Chemical Engineering (2012)
Boron nitride nanotubes (BNNTs), which are structurally similar to carbon nanotubes (CNTs), were synthesized in 1995 for the first time. They are made up by folding atom sheets which consist of boron and nitrogen atoms into cylindrical form. After their discovery, BNNTs have been attracting great attention due to their extraordinary mechanical, thermal, electrical, and optical properties. In this study, BNNTs were synthesized from the reaction of ammonia gas with the boron and iron powder mixture in a tubul...
Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer
Buber, Ece; SÖYLEMEZ, SANİYE; UDUM, YASEMİN; Toppare, Levent Kamil (2018-07-01)
Since conjugated polymers are an important class of materials with remarkable properties in biosensor applications, in this study, a novel glucose biosensor based on a conjugated polymer was fabricated via the electropolymerization of the monomer 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2',3'-c]phenazine onto a graphite electrode surface. Glucose oxidase (GOx) was used as the model biological recognition element. As a result of the enzymatic reaction between GOx and glucose, the glucose amount was det...
Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis
Köse, Kadir Özgün; Aydınol, Mehmet Kadri (2022-09-01)
Pinecone-derived activated carbon (AC) and bimetallic transition metal phosphide (TMP) composites were produced and utilized as electrochemical capacitor (EC) electrodes and oxygen evolution reaction (OER) catalysts in this study. The base transition metal (TM) was Ni for all samples, and the secondary TM was one of Fe, Mn and Co. AC serves as a porous structure for double layer formation and active sites for OER catalysis. Bimetallic TMP is utilized due to redox reactions in EC and catalytic activity in OE...
Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
Iroc, L.K.; Tukac, O.U.; Tanrisevdi, B.B.; El-Atwani, O.; Tunes, M.A.; Kalay, Yunus Eren; Aydoğan Güngör, Eda (2022-11-01)
© 2022Refractory high entropy alloys (RHEAs) are considered promising materials for high-temperature applications due to their thermal stability and high-temperature mechanical properties. However, most RHEAs have high density (>10 g/cm3) and exhibit limited ductility at low temperatures and softening at high temperatures. In this study, we show that oxygen-doping can be used as a new alloy design strategy for tailoring the mechanical behavior of the TiZrHfNbTa alloy: a novel low-density (7.98 g/cm3) ductil...
Synthesis and Characterization of Aluminum Containing Silica Aerogel Catalysts for Degradation of PLA
Sivri, Seda; Dilek Hacıhabiboğlu, Çerağ; Sezgi, Naime Aslı (Walter de Gruyter GmbH, 2019-05-01)
Aluminum loaded silica aerogel based catalysts were synthesized by impregnation of aluminum into silica aerogel produced using sol-gel method in different aluminum loadings (2.5-15 wt%) to investigate their performances in degradation of polylactic acid (PLA).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Erdoğan and M. Tokyay, “Development of Inorganic Silicone Polymers from Silica Fume,” presented at the 7th Asian Symposium on Polymers in Concrete (ASPIC 2012), Istanbul Tech Univ, Istanbul, TURKEY, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52609.