Numerical simulation of turbine internal cooling and conjugate heat transfer problems with Rans based turbulance models

Download
2012
Görgülü, İlhan
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence models. The complex flow on both surfaces of the internally cooled turbine blades is caused from the boundary layer laminar-to-turbulence transition, shock wave interaction with boundary layer, high streamline curvature and sequential flow separation. In order to discover the performances of different turbulence models on these flow types, analyses have been conducted on five different experimental studies each concerned with different flow and heat transfer characteristics. Each experimental study has been examined with four different turbulence models available in the commercial software (ANSYS FLUENT13.0) to decide most suitable RANS-based turbulence model. The Realizable k-ε model, Shear Stress Transport k-ω model, Reynolds Stress Model and V2-f model, which became increasingly popular during the last few years, have been used at the numerical simulations. According to conducted analyses, despite a few unreasonable predictions, in the majority of the numerical simulations, V2-f model outperforms other first-order turbulence models (Realizable k-ε and Shear Stress Transport k-ω) in terms of accuracy and Reynolds Stress Model in terms of convergence.

Suggestions

Numerical Analysis of Nanofluids Convective Heat Transfer with Euler Euler and Mixture Model Approaches
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2014-06-13)
Forced convection heat transfer characteristics of Al2O3/water nanofluid are investigated numerically by using mixture model two-phase flow approach with Fluent software. The initially hydro-dynamically fully developed laminar nanofluid flow simulations are performed with different nanoparticle volume fractions. The effects of thermal conductivity and viscosity models on heat transfer enhancements are carried out for constant heat flux boundary condition. As a result, the heat transfer coefficient results o...
Numerical simulation of scour at the rear side of a coastal revetment
Şentürk, Barış Ufuk; Guler, Hasan Gokhan; Baykal, Cüneyt (2023-05-01)
This paper presents the results of a numerical modeling study on the scouring of unprotected rear side material of a rubble mound coastal revetment due to the overtopping of solitary-like waves utilizing a coupled hydro-morphodynamic computational fluid dynamics (CFD) model. Three cases having various wave heights are tested with six different turbulence models together with different wall functions. The hydrodynamic results (free-surface elevations, overtopping volumes, and jet thicknesses) and morphologic...
Numerical Analysis of Phase Change Material Characteristics Used in a Thermal Energy Storage Device
Bonyadi, Nima; Somek, Suleyman Kazim; Ozalevli, Cemil Cihan; Baker, Derek Keıth; Tarı, İlker (2018-01-01)
In this study, a numerical analysis is performed to investigate the freezing process of phase change materials (PCM) in a predesigned thermal energy storage (TES) device. This TES device is integrated with a milk storage cooling cycle operating under predefined practical conditions. Using this cooling unit, 100 litres of milk is kept cool at 4 degrees C for 48 hours before it is collected. A 2-D model of the TES device is developed in COMSOL Multiphysics to analyze the phase change performance of water-base...
Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors
Kanbur, Yasin; Irimia-Vladu, Mihai; Glowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Guenther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; ERTEN ELA, ŞULE; Schwoediauer, Reinhard; Sitter, Helmut; Kucukyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar (2012-05-01)
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C-60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm(2)/Vs. Devices with pentacene showed a mobility of 0.16 cm(2)/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of similar to...
Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla (2018-01-01)
In this study, fluid flow and heat transfer in a trapezoidal microchannel are numerically investigated. For this purpose, a reference study with experimental and numerical solutions is adopted from the literature and solved with COMSOL multiphysics. Good agreement with the results of the reference work is obtained. In addition, effects of stabilization methods and element discretization options that are offered by the program on the results are investigated and discussed with examples. In addition, two diff...
Citation Formats
İ. Görgülü, “Numerical simulation of turbine internal cooling and conjugate heat transfer problems with Rans based turbulance models,” M.S. - Master of Science, Middle East Technical University, 2012.