Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study

2018-01-01
Turgay, Metin Bilgehan
Güvenç Yazıcıoğlu, Almıla
In this study, fluid flow and heat transfer in a trapezoidal microchannel are numerically investigated. For this purpose, a reference study with experimental and numerical solutions is adopted from the literature and solved with COMSOL multiphysics. Good agreement with the results of the reference work is obtained. In addition, effects of stabilization methods and element discretization options that are offered by the program on the results are investigated and discussed with examples. In addition, two different versions of the same program are compared on the effect of stabilization methods on results. Last, some comments on the level of relative tolerance are provided.
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS

Suggestions

Numerical analysis of natural convective heat transfer through porous medium
Aylangan, Benan; Yüncü, Hafit; Department of Mechanical Engineering (2006)
In this thesis, natural convective heat transfer through an impermeable and fluid saturated porous medium is investigated numerically. A FORTRAN based code is developed and used in order to present the outputs of the applied model and the assumptions. The solutions of flow fields and temperature fields are presented within the medium. Moreover, Nusselt number variations for different values of Darcy, Prandtl, and Rayleigh numbers, and some other thermodynamic properties are investigated and presented. Compa...
Analysis of single phase fluid flow and heat transfer in slip flow regime by parallel implementation of Lattice Boltzmann method on GPUS
Çelik, Sıtkı Berat; Sert, Cüneyt; Çetin, Barbaros; Department of Mechanical Engineering (2012)
In this thesis work fluid flow and heat transfer in two-dimensional microchannels are studied numerically. A computer code based on Lattice Boltzmann Method (LBM) is developed for this purpose. The code is written using MATLAB and Jacket software and has the important feature of being able to run parallel on Graphics Processing Units (GPUs). The code is used to simulate flow and heat transfer inside micro and macro channels. Obtained velocity profiles and Nusselt numbers are compared with the Navier-Stokes ...
Numerical simulation of turbine internal cooling and conjugate heat transfer problems with Rans based turbulance models
Görgülü, İlhan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2012)
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence mode...
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Thermal analysis applications in fossil fuel science - Literature survey
Kök, Mustafa Verşan (2002-01-01)
In this study, instances where thermal analysis techniques ( differential scanning calorimetry, thermogravimetry, differential thermal analysis, etc.) have been applied for fossil fuel characterisation and kinetics are reviewed. The scientific results presented clearly showed that thermal analysis is a well-established technique used in fossil fuel research area. The literature survey showed that thermal methods were important not only theoretically but also from a practical point of view.
Citation Formats
M. B. Turgay and A. Güvenç Yazıcıoğlu, “Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study,” NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, pp. 332–346, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49025.