Aerodynamic analysis of long-span bridge cross-sections using random vortex method

Download
2012
Kaya, Halil
In this thesis, two dimensional, incompressible, viscous flow past bluff bodies and a bridge section, in which strong vortex shedding and unsteady attribute of flow are generally found, is simulated by means of random vortex method. The algorithm and method are described in detail. The validation and applicability of the developed numerical implementation to general wind engineering problems is illustrated by solving a number of classical problems, such as flow past circular and square cylinders. An application of the numerical implementation in the area of computational wind engineering is performed by analyzing a bridge deck section. Moreover, all results are compared with experimental and numerical studies in literature.

Suggestions

Analysis and control of complex flows in U-bends using computational fluid dynamics
Güden, Yiğitcan; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2014)
Analysis and control of flow structure is crucial in the sense that the increase in the ratio of inertial and centrifugal forces to viscous forces destabilizes the flow and creates a three-dimensional complex flow consisting of stream wise parallel counter-rotating vortices, so-called Dean vortices. In addition, due to the curvature in U-bends, in line with these vortices, a high level of turbulence is detected, which is quite critical in considering noise problems and structural failures. In this thesis, c...
Incompressible flow simulations using least squares spectral element method on adaptively refined triangular grids
Akdağ, Osman; Sert, Cüneyt; Department of Mechanical Engineering (2012)
The main purpose of this study is to develop a flow solver that employs triangular grids to solve two-dimensional, viscous, laminar, steady, incompressible flows. The flow solver is based on Least Squares Spectral Element Method (LSSEM). It has p-type adaptive mesh refinement/coarsening capability and supports p-type nonconforming element interfaces. To validate the developed flow solver several benchmark problems are studied and successful results are obtained. The performances of two different triangular ...
Numerical investigation of vortex formation at intake structures using flow-3d software /
Tataroğlu, Rüçhan Müge; Köken, Mete; Department of Civil Engineering (2014)
Formation of the vortices in a horizontal water intake structure composed of a reservoir-pipe system is investigated using 3D numerical modeling. The geometrical and hydraulic conditions of the system such as pipe diameters, the distance between the side walls of the intake and the flow discharge is altered and the critical submergence depth required for the formation of the vortex for each test is determined. Although it is possible to capture an air-entraining vortex in the numerical model, there is a dev...
Aerodynamic characteristics of flapping motion in hover
Kurtuluş, Dilek Funda; FARCY, A.; ALEMDAROGLU, N. (Springer Science and Business Media LLC, 2008-01-01)
The aim of the present work is to understand the aerodynamic phenomena and the vortex topology of an unsteady flapping motion by means of numerical and experimental methods. Instead of the use of real insect/bird wing geometries and kinematics which are highly complex and difficult to imitate by an exact modeling, a simplified model is used in order to understand the unsteady aerodynamics and vortex formation mechanisms during the different phases of the flapping motion. The flow is assumed to be laminar wi...
Elliptical Pin Fins as an Alternative to Circular Pin Fins for Gas Turbine Blade Cooling Applications Part 2 Wake Flow Field Measurements and Visualization Using Particle Image Velocimetry
Uzol, Oğuz (null; 2001-06-07)
Extensive wake flow field measurements and visualizations are conducted using particle image velocimetry (PIV) inside the wakes of the elliptical and circular pin fin arrays in order to better understand the flow physics and the loss mechanisms of these devices. The true-mean velocity field inside the wake two diameters downstream of the pin fin arrays is obtained by collecting and ensemble averaging a large number of PIV samples in the midplane of the test section. Additional experiments are also conducted...
Citation Formats
H. Kaya, “Aerodynamic analysis of long-span bridge cross-sections using random vortex method,” M.S. - Master of Science, Middle East Technical University, 2012.