Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of conjugate heat transfer problems using least squares finite element method
Download
index.pdf
Date
2012
Author
Göktolga, Mustafa Uğur
Metadata
Show full item record
Item Usage Stats
226
views
101
downloads
Cite This
In this thesis study, a least-squares finite element method (LSFEM) based conjugate heat transfer solver was developed. In the mentioned solver, fluid flow and heat transfer computations were performed separately. This means that the calculated velocity values in the flow calculation part were exported to the heat transfer part to be used in the convective part of the energy equation. Incompressible Navier-Stokes equations were used in the flow simulations. In conjugate heat transfer computations, it is required to calculate the heat transfer in both flow field and solid region. In this study, conjugate behavior was accomplished in a fully coupled manner, i.e., energy equation for fluid and solid regions was solved simultaneously and no boundary conditions were defined on the fluid-solid interface. To assure that the developed solver works properly, lid driven cavity flow, backward facing step flow and thermally driven cavity flow problems were simulated in three dimensions and the findings compared well with the available data from the literature. Couette flow and thermally driven cavity flow with conjugate heat transfer in two dimensions were modeled to further validate the solver. Finally, a microchannel conjugate heat transfer problem was simulated. In the flow solution part of the microchannel problem, conservation of mass was not achieved. This problem was expected since the LSFEM has problems related to mass conservation especially in high aspect ratio channels. In order to overcome the mentioned problem, weight of continuity equation was increased by multiplying it with a constant. Weighting worked for the microchannel problem and the mass conservation issue was resolved. Obtained results for microchannel heat transfer problem were in good agreement in general with the previous experimental and numerical works. In the first computations with the solver; quadrilateral and triangular elements for two dimensional problems, hexagonal and tetrahedron elements for three dimensional problems were tried. However, since only the quadrilateral and hexagonal elements gave satisfactory results, they were used in all the above mentioned simulations.
Subject Keywords
Heat
,
Heat
,
Viscous flow.
,
Navier-Stokes equations.
URI
http://etd.lib.metu.edu.tr/upload/12614787/index.pdf
https://hdl.handle.net/11511/21983
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of single phase fluid flow and heat transfer in slip flow regime by parallel implementation of Lattice Boltzmann method on GPUS
Çelik, Sıtkı Berat; Sert, Cüneyt; Çetin, Barbaros; Department of Mechanical Engineering (2012)
In this thesis work fluid flow and heat transfer in two-dimensional microchannels are studied numerically. A computer code based on Lattice Boltzmann Method (LBM) is developed for this purpose. The code is written using MATLAB and Jacket software and has the important feature of being able to run parallel on Graphics Processing Units (GPUs). The code is used to simulate flow and heat transfer inside micro and macro channels. Obtained velocity profiles and Nusselt numbers are compared with the Navier-Stokes ...
SPECTROSCOPIC MODIFICATIONS OF PIPPARD RELATIONS AND THEIR APPLICATION TO NH4CL
Yurtseven, Hasan Hamit (1994-07-01)
The Pippard relations have been reformulated in terms of the spectroscopic parameters and applied to the NH4Cl system in the vicinity of its lambda-transition. We have effectively tested some of these relations in an earlier study where we have used, for the frequency shift, data for the nu5 lattice mode of NH4Cl. Here, using our observed frequency shifts for the internal mode, nu2 of NH4+, we have obtained a good fit to the Pippard relations for temperatures below T(lambda) for the NH4Cl system. We have th...
Experimental Investigation of Uninterrupted and Interrupted Microchannel Heat Sinks
SOYSAL, Ayse Gozde Ulu; Sert, Cüneyt; Yazicioglu, Almila Guvenc (2013-09-27)
In this work, the relation between heat transfer performance and interruption of microchannels was investigated. Experiments were conducted on uninterrupted and interrupted aluminium channel heat sinks of different channel widths. Two different types of interrupted channels were tested: channels having single interruption and 7 interruptions. Distilled water was used to remove a constant heat load of 40 W in the volumetric flow rate range of 0.5-1.1 lpm. The interruption of channels improved the thermal per...
3-D numerical simulations of fluid flow and heat transfer in various micro conduits
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2017)
In this work, it is aimed to investigate the effect of roughness geometrical properties and configurations on laminar flow and heat transfer characteristics in microchannels, numerically. For this purpose, two-dimensional parallel plate, and three-dimensional trapezoidal microchannels with different roughness properties are modeled along with the smooth ones. Fluid flow and heat transfer simulations are conducted with COMSOL Multiphysics. Roughness is modeled as triangular obstructions on one of the plates ...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. U. Göktolga, “Simulation of conjugate heat transfer problems using least squares finite element method,” M.S. - Master of Science, Middle East Technical University, 2012.