Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
3-D numerical simulations of fluid flow and heat transfer in various micro conduits
Download
index.pdf
Date
2017
Author
Turgay, Metin Bilgehan
Metadata
Show full item record
Item Usage Stats
4
views
1
downloads
In this work, it is aimed to investigate the effect of roughness geometrical properties and configurations on laminar flow and heat transfer characteristics in microchannels, numerically. For this purpose, two-dimensional parallel plate, and three-dimensional trapezoidal microchannels with different roughness properties are modeled along with the smooth ones. Fluid flow and heat transfer simulations are conducted with COMSOL Multiphysics. Roughness is modeled as triangular obstructions on one of the plates in two-dimensions, and conical obstructions in three-dimensions on the base of the trapezoidal channel, to mimic the natural roughness in silicon microchannels and microstructures on lotus leaves. Numerically obtained results, for smooth and rough channels, are compared with each other, and with the results that exist in the literature. It is found that, both in 2D and 3D tested geometries, local Nusselt number increases through the tip of the roughness elements due to increased velocity of the subjected flow. However, near the base of the roughness elements and between them, reduction in local Nusselt number is observed due to reduced velocity fields reduced convective heat flux in the fluid, and increased thermal conductivity of the fluid through the exit of the channels. Frictional characteristics of the tested rough geometries showed nonlinear behavior with the complexity of the surface parameters. It is shown that widely used relative roughness height concept is not enough to define the roughness effect in microchannels. Additionally, effects of stabilization methods, element discretization order, and relative tolerance level on the results of microfluidic simulations with COMSOL are investigated.
Subject Keywords
Heat pipes.
,
Fluid dynamics.
,
Microfluidic devices.
,
Heat
URI
http://etd.lib.metu.edu.tr/upload/12621568/index.pdf
https://hdl.handle.net/11511/26946
Collections
Graduate School of Natural and Applied Sciences, Thesis