Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and experimental testing of an adsorbent bed for a thermal wave adsorption cooling cycle
Download
index.pdf
Date
2012
Author
Çağlar, Ahmet
Metadata
Show full item record
Item Usage Stats
258
views
754
downloads
Cite This
Poor heat and mass transfer inside the adsorbent bed of thermal wave adsorption cooling cycles cause low system performance and is an important problem in the adsorbent bed design. In this thesis, a new adsorbent bed is designed, constructed and tested to increase the heat and mass transfer in the adsorbent bed. The adsorbent bed is constructed from a finned tube in order to enhance the heat transfer. Additionally, the finned bed geometry is theoretically modeled and the model is solved time dependently by using Comsol Multiphysics software program. The distributions of dependent variables, i.e. temperature, pressure and amount adsorbed, are simulated and plotted in Comsol Multiphysics. In the model, the dependent variables are computed by solving the energy, mass and momentum transfer equations in a coupled way and their variations are investigated two-dimensionally. The results are presented with multicolored plots in a 2-D domain. Furthermore, a parametric study is carried out for determining factors that enhance the heat and mass transfer inside the adsorbent bed. In this parametric study, the effects of several design and operational parameters on the dependent variables are investigated. In the experimental study, the finned tube is tested using natural zeolite-water and silica gel-water working pairs. Temperature, pressure and amount adsorbed variations inside the adsorbent bed at various operating conditions are investigated. After that, a second adsorbent bed with a larger size is constructed and tested. The effect of the particle diameter of the adsorbent is also investigated. The experimental and theoretical results are compared.
Subject Keywords
Heat
,
Mass transfer.
,
Thermodynamics.
,
Heat-transfer media.
,
Heat
,
Cooling.
URI
http://etd.lib.metu.edu.tr/upload/12614754/index.pdf
https://hdl.handle.net/11511/22040
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Conceptual Design and Simulation of Forced Convection Micro Heat Spreaders
Sert, Cüneyt (1999-11-21)
The micro heat spreader (MHS) is a closed loop single-phase microfluidic system for efficient dissipation of large, concentrated heat loads. The MHS connects two flow expansion chambers through a micro-channel. The bottom surfaces of the expansion chambers consist of electrostatically actuated micro-membranes. A continuous pumping action for the coolant fluid is generated by driving the membranes with a phase difference of \pi. Heat generated by the source located just above the micro-channel is rapidly con...
Modeling of multidimensional heat transfer in a rectangular grooved heat pipe /
Odabaşı, Gülnihal; Dursunkaya, Zafer; Department of Mechanical Engineering (2014)
Heat pipes are generally preferred for electronics cooling application due to large heat transfer capacity in spite of small size. Micro heat pipes use small channels, whose dimension is on the order of micrometers, to generate necessary capillary action maintaining fluid flow for heat pipe operation. In the present study a flat micro heat pipe with rectangular cross section is analyzed numerically. A simplified axial fluid flow model is utilized to find liquid-vapor interface shape variation along the heat...
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
Designing solar hot water systems for scaling environments
Baker, Derek Keıth (2001-02-01)
Component failures and system performance degradation in SHW systems due to scaling are common in areas with hard water, it appears that many valve and pump failures on the potable water side are related to scaling, and any scale build-up on heat transfer surfaces will result in performance degradation. Different designs are compared in regard to their suscepribility to problematic scaling. Indirect systems utilizing external and tank wall heat exchangers are compared in regard to the rate of scaling and th...
PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION
Atay, Atakan; Sariarslan, Busra; Kuscu, Yigit F.; Saygan, Samet; Akkus, Yigit; Gurer, A. Turker; Cetin, Barbaros; Dursunkaya, Zafer (2019-01-01)
Heat pipes are widely used in thermal management of high heat flux devices due to their ability of removing high heat loads with small temperature differences. While the thermal conductivity of standard metal coolers is approximately 100-500 W/m.K, effective thermal conductivities of heat pipes, which utilize phase-change heat transfer, can reach up to 50,000 W/m.K. In industrial applications, commercially available heat pipes are commonly preferred by thermal engineers due to their low cost and versatility...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Çağlar, “Design and experimental testing of an adsorbent bed for a thermal wave adsorption cooling cycle,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.