Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Designing solar hot water systems for scaling environments
Date
2001-02-01
Author
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
151
views
0
downloads
Cite This
Component failures and system performance degradation in SHW systems due to scaling are common in areas with hard water, it appears that many valve and pump failures on the potable water side are related to scaling, and any scale build-up on heat transfer surfaces will result in performance degradation. Different designs are compared in regard to their suscepribility to problematic scaling. Indirect systems utilizing external and tank wall heat exchangers are compared in regard to the rate of scaling and the consequences of scaling on system performance. The tank wall heat exchanger appears preferable over a doubly pumped external heat exchanger, both in terms of system reliability and resistance to performance degradation.
Subject Keywords
Solar Absorber-Convertors
,
Solar Heating
,
Reliability
,
Failure Analysis
,
Valves
,
Pumps
,
Heat Exchangers
,
Thermal Analysis
URI
https://hdl.handle.net/11511/38124
Journal
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.1350564
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
Design and experimental testing of an adsorbent bed for a thermal wave adsorption cooling cycle
Çağlar, Ahmet; Yamalı, Cemil; Baker, Derek Keıth; Department of Mechanical Engineering (2012)
Poor heat and mass transfer inside the adsorbent bed of thermal wave adsorption cooling cycles cause low system performance and is an important problem in the adsorbent bed design. In this thesis, a new adsorbent bed is designed, constructed and tested to increase the heat and mass transfer in the adsorbent bed. The adsorbent bed is constructed from a finned tube in order to enhance the heat transfer. Additionally, the finned bed geometry is theoretically modeled and the model is solved time dependently by ...
Modeling of multidimensional heat transfer in a rectangular grooved heat pipe /
Odabaşı, Gülnihal; Dursunkaya, Zafer; Department of Mechanical Engineering (2014)
Heat pipes are generally preferred for electronics cooling application due to large heat transfer capacity in spite of small size. Micro heat pipes use small channels, whose dimension is on the order of micrometers, to generate necessary capillary action maintaining fluid flow for heat pipe operation. In the present study a flat micro heat pipe with rectangular cross section is analyzed numerically. A simplified axial fluid flow model is utilized to find liquid-vapor interface shape variation along the heat...
Modelling and transient analysis of a hybrid liquid desiccant cooling system
Karshenass, Arash; Yamalı, Cemal; Baker, Derek Keıth; Department of Mechanical Engineering (2014)
Desiccant Cooling Systems (DCS) are considered as an alternative method for conventional vapor compression cooling systems (VCCS) or at least a complimentary component to them. In conventional VCCS inlet air is cooled down to blow its dew point for dehumidification and then is reheated again to obtain air flow with desired temperature and humidity, and consequently inefficient consumption of energy. In DCS, dehumidification of air is done by utilizing of desiccant material to get desirable humidity and then...
Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. K. Baker, “Designing solar hot water systems for scaling environments,”
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 43–47, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38124.