Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Comparative evaluation of foreground / background segmentation algorithms
Download
index.pdf
Date
2012
Author
Pakyürek, Muhammet
Metadata
Show full item record
Item Usage Stats
254
views
91
downloads
Cite This
Foreground Background segmentation is a process which separates the stationary objects from the moving objects on the scene. It plays significant role in computer vision applications. In this study, several background foreground segmentation algorithms are analyzed by changing their critical parameters individually to see the sensitivity of the algorithms to some difficulties in background segmentation applications. These difficulties are illumination level, view angles of camera, noise level, and range of the objects. This study is mainly comprised of two parts. In the first part, some well-known algorithms based on pixel difference, probability, and codebook are explained and implemented by providing implementation details. The second part includes the evaluation of the performances of the algorithms which is based on the comparison v between the foreground background regions indicated by the algorithms and ground truth. Therefore, some metrics including precision, recall and f-measures are defined at first. Then, the data set videos having different scenarios are run for each algorithm to compare the performances. Finally, the performances of each algorithm along with optimal values of their parameters are given based on f measure.
Subject Keywords
Computer vision.
,
Artificial intelligence.
,
Image processing
,
Digital image correlation.
,
Computer algorithms.
URI
http://etd.lib.metu.edu.tr/upload/12614666/index.pdf
https://hdl.handle.net/11511/22122
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A comparative study on pose estimation algorithms using visual data
Çetinkaya, Güven; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2012)
Computation of the position and orientation of an object with respect to a camera from its images is called pose estimation problem. Pose estimation is one of the major problems in computer vision, robotics and photogrammetry. Object tracking, object recognition, self-localization of robots are typical examples for the use of pose estimation. Determining the pose of an object from its projections requires 3D model of an object in its own reference system, the camera parameters and 2D image of the object. Mo...
Improving edge detection using ıntersection consistency
Çiftçi, Serdar; Yarman Vural, Fatoş Tunay; Kalkan, Sinan; Department of Computer Engineering (2011)
Edge detection is an important step in computer vision since edges are utilized by the successor visual processing stages including many tasks such as motion estimation, stereopsis, shape representation and matching, etc. In this study, we test whether a local consistency measure based on image orientation (which we call Intersection Consistency - IC), which was previously shown to improve detection of junctions, can be used for improving the quality of edge detection of seven different detectors; namely, C...
Comparison of histograms of oriented optical flow based action recognition methods
Erciş, Fırat; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2012)
In the task of human action recognition in uncontrolled video, motion features are used widely in order to achieve subject and appearence invariance. We implemented 3 Histograms of Oriented Optical Flow based method which have a common motion feature extraction phase. We compute an optical flow field over each frame of the video. Then those flow vectors are histogrammed due to angle values to represent each frame with a histogram. In order to capture local motions, The bounding box of the subject is divided...
Hierarchical representations for visual object tracking by detection
Beşbınar, Beril; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2015)
Deep learning is the discipline of training computational models that are composed of multiple layers and these methods have improved the state of the art in many areas such as visual object detection, scene understanding or speech recognition. Rebirth of these fairly old computational models is usually related to the availability of large datasets, increase in the computational power of current hardware and more recently proposed unsupervised training methods that exploit the internal structure of very lar...
Object recognition and segmentation via shape models
Altınoklu, Metin Burak; Ulusoy, İlkay; Tarı, Zehra Sibel; Department of Electrical and Electronics Engineering (2016)
In this thesis, the problem of object detection, recognition and segmentation in computer vision is addressed with shape based methods. An efficient object detection method based on a sparse skeleton has been proposed. The proposed method is an improved chamfer template matching method for recognition of articulated objects. Using a probabilistic graphical model structure, shape variation is represented in a skeletal shape model, where nodes correspond to parts consisting of lines and edges correspond to pa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Pakyürek, “A Comparative evaluation of foreground / background segmentation algorithms,” M.S. - Master of Science, Middle East Technical University, 2012.